Accepted Manuscript

Genome-wide identification of abiotic stress-regulated and novel microRNAs in mulberry leaf

Ping Wu, Shaohua Han, Weiguo Zhao, Tao Chen, Long Li

PII: S0981-9428(15)30052-8

DOI: 10.1016/j.plaphy.2015.07.007

Reference: PLAPHY 4225

To appear in: Plant Physiology and Biochemistry

Received Date: 25 May 2015
Revised Date: 29 June 2015
Accepted Date: 3 July 2015

Please cite this article as: P. Wu, S. Han, W. Zhao, T. Chen, L. Li, Genome-wide identification of abiotic stress-regulated and novel microRNAs in mulberry leaf, *Plant Physiology et Biochemistry* (2015), doi: 10.1016/j.plaphy.2015.07.007.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1 Genome-wide identification of abiotic stress-regulated and novel

2 microRNAs in mulberry leaf

3

- 4 Ping Wu^{1,2}, Shaohua Han¹, Weiguo Zhao¹, Tao Chen^{1,2}, Long Li^{1,2*}
- 5 1 Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang Jiangsu, China;
- 6 2 Quality Inspection Center for Sericulture Products, Ministry of Agriculture, Zhenjiang Jiangsu, China

7

- 8 Abstract
- 9 As the most important food plant for sericultural industry, mulberry trees have to suffer from a
- wide range of abiotic and biotic stresses, such as drought and high salinity. MicroRNAs (miRNAs)
- 11 have been proved to play important roles in abiotic stresses regulation in many plants. However,
- there are selodm reports on the miRNAs expression profiles upon abiotic challenges in mulberry.
- In this study, three small RNA libraries from mulberry leaf tissue with or without drought or salt
- 14 treatment were constructed and deep sequenced. Total of 48 conserved miRNAs (including
- miRNA*) and 162 novel miRNAs were identified (processing precision value>0.1). A total of 270
- and 1963 target genes were predicted for conserved miRNAs and novel miRNAs, respectively. 13
- 17 differentially expressed miRNAs were detected under drought or salt stresses by deep sequencing
- and qRT-PCR. 5' RLM-RACE validated *Morus 013341* to be the target gene of miR-395a. Our
- 19 results provided initial clue to further study molecular mechanism on abiotic stresses regulation in
- 20 mulberry.

21

22 **Key words:** mulberry; microRNAs; abiotic stresses; deep sequencing

23

* E-mail: <u>seri68@hotmail.com</u>; Tel.: +86-511-85616637

25

Download English Version:

https://daneshyari.com/en/article/2014859

Download Persian Version:

https://daneshyari.com/article/2014859

<u>Daneshyari.com</u>