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A B S T R A C T

The minimisation of the distance function between the Gibbs energy of mixing and its common tangent
plane (or line) is applied to adsorbed solutions. A specific algorithm to deal with the associated bilevel
programming problem is presented and discussed. This approach is validated with experimental data
and ideal adsorbed solution theory calculations for an ideal case andwith experimental data for two non-
ideal cases at low and high pressure. While the presently adopted non-ideal formulation provides
solutions fulfilling only the necessary condition for equilibrium, the common tangent plane approach
proposed in this paper enables the direct evaluation of the necessary and sufficient solution.

ã 2015 Elsevier B.V. All rights reserved.

1. Introduction

The adsorbed solution theory (AST) interprets gas-adsorbate
equilibrium similarly to vapor–liquid equilibrium (VLE) [1]. The
theory states the presence of two partially miscible phases such as
a bulk gas phase and an adsorbed phase. There are no
thermodynamic flaws in such an approach in the case of single
component adsorption while, as discussed in [2], for the case of
multi-component mixture adsorption, the iso-reduced-grand-
potential condition is mandatory to make the theory thermody-
namically consistent. Such an additional condition is necessary
with respect to VLE results from the phase rule applied to
adsorption equilibrium [3]. In the simplest case adsorption
thermodynamics of multicomponent mixtures is assumed ideal
with the bulk gas phase being an ideal gas and the adsorbed phase
being an ideal solution. The ideal adsorption solution theory (IAST)
is based on these assumptions [3], where the equilibrium is
described by the pseudo Raoult’s law:

Pbulkyi ¼ P0
i xii ¼ 1;2; :::NC (1)

with

XNC
i

xi ¼ 1 (2)

where Pbulk is the pressure in the bulk gas phase, yi is the mole
fraction of component i in the bulk gas phase, xi is themole fraction
of component i in the adsorbed phase, NC is the total number of
components and Pi

0 is the surface pressure of the component i.
The iso-reduced-grand-potential condition states that each

component in the adsorbed phase has the same reduced grand
potential at equilibrium. This last condition is expressed for the
ideal case as follows:

ci ¼
ZP0i
0

nid lnPið Þi ¼ 1;2; ::::NC (3)

ci ¼ consti ¼ 1;2; ::::NC (4)

whereci (mol/kg) is the reduced grandpotential of the component
i and ni is the is the absolute amount adsorbed for the pure
component i (mol/kg), extensively described in [4,5].

By specifying the bulk gas pressure (Pbulk), the equilibrium
temperature (T) and composition of the multicomponent gaseous
mixture in the bulk phase (yi), the composition of the multicom-
ponent mixture in the adsorbed phase (xi) can be calculated by
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solving the system of Eqs. (1)–(4). This interpretation is successful
in several adsorption systems which can be assumed ideal.

For a more general case, activity coefficients and fugacity
coefficients must be introduced in Eq. (1) to take into account
non-ideal behavior in both phases. Thus Eqs. (1) and (3) become:

Pbulkyi’i ¼ ’0
i P

0
i xig ii ¼ 1;2; :::NC (5)

ci ¼
Zf 0i
0

nid lnf ið Þi ¼ 1;2; ::::NC (6)

where ’i and g i are respectively the fugacity and activity
coefficients of component i, ’i

0 is the fugacity coefficient of pure
component i in the adsorbed phase and fi = Pbulkyi’i is the fugacity
of component i in the bulk gas phase.

Eqs. (5) and (6) need additional models for the evaluation of
fugacity and activity coefficients. While the fugacity coefficients
can be calculated using the extensive thermodynamic work on
specific equations of state, the activity coefficients cannot be
predicted from liquid state models because they do not include the
interaction with the solid adsorbent, which is implicit in the
definition of the reduced grand potential [5,6]. The non-ideal
formulation of the AST through the system of Eqs. ((2), (4)–(6)),
provides solutions fulfilling only the necessary condition for
equilibrium. In general, multiple solutions exist for the above

system of equations and convergence to a specific solution
depends on the choice of the initial guess. Despite this, strongly
non-ideal adsorption systems are reported rarely in the open
literature and the above formulation converges to the physically
correct solution.

Rigorously, only the common tangent plane (or line) of themolar
Gibbs energy of mixing (Dgmix) or alternatively the global
minimisation of Gibbs energy locate equilibrium compositions
which fulfill thenecessaryandsufficientconditionat thesametime.

The present work shows applications of the common tangent
plane (CTP) approach to ideal and non-ideal adsorption equilibria
in the case of binary systems.

2. Gibbs energy of mixing for ideal adsorbed solutions

The definition of ideal solution can be given according to either
Lewis–Randall or Raoult’s law. These two definitions are contra-
dictory in some aspects as pointed out in [7,8]. It is essentially not
possible to have the same definition of ideal solution that satisfies
Raoult’s law and has a simple expression of the ideal-mixture
property changes on mixing at the same time. According to the
Lewis–Randall definition, in an ideal solution the fugacities of the
components at constant temperature and pressure follow:

f i ¼ wif
0
i i ¼ 1;2; :::NC (7)

where fi
0 is the fugacity of pure component i at the system

temperature and pressure andwi is themole fraction of component
i in the specific phase considered. Accordingly, the molar Gibbs
energy of mixing is represented by:

Dgmix ¼ RT
XNC
i

wiln
f i
f 0i

 !
(8)

Applying Eq. (7) the following equation is derived:

Dgmix ¼ RT
XNC
i

wiln wið Þ (9)

By applying Eq. (7), it is demonstrated that a Raoult’s law
solution in equilibrium with an ideal gas does not match the
Lewis–Randall rule [7]. This is due to the need to choose two
different reference states for the pure components in order to
describe correctly the dependency of Dgmix on composition. This
also leads to a different expression of Dgmix for each phase. The
Lewis–Randall ideal solution definition can be readily extended to
adsorbed solutions. The only aspect to carefully evaluate is the
selection of the reference state for the fugacities in Eq. (8) which
are crucial for calculating the correct Dgmix. In analogy with the
considerations reported in [8,9] for VLE, and limiting for sake of
clarity the study to an ideal binary system at a fixed temperature,
Pbulk will be located between the equilibrium surface pressures
(Pi0) of the components (Fig. 1). Considering component 1 as the
most strongly adsorbed component and component 2 as the less
strongly adsorbed component, the first one will have a higher
reduced grand potential curve than the second one and for this
reason its reference state will be in the adsorbed phase which is its
more stable phase. Conversely, the less strongly adsorbed
component will have the reference state in the gas phase. This
result leads to the following equations:

g
RT

¼

gmix;ads

RT
¼ x1ln x1ð Þ þ x2ln

P0
2x2
Ptot

 !

gmix;gas

RT
¼ y1ln

Ptoty1
P0
1

 !
þ y2ln y2ð Þ

8>>>><
>>>>:

(10)

Nomenclature

fi Fugacity of component i [kPa]
fi
0 Fugacity of pure component i at the system

temperature and pressure [kPa]
gex Excess Gibbs energy [kJ/mol]
gmix,ads Branch of the Gibbs energy of mixing function

(adsorbed phase) [kJ/mol]
gmix,gas Branch of the Gibbs energy of mixing function (bulk

gas phase) [kJ/mol]
Dgmix Molar Gibbs energy of mixing [kJ/mol]
NC Number of components participating in the adsorp-

tion
ni Specific absolute amount adsorbed of component i

[mol/kg]
ntot Specific amount of total adsorbed moles [mol/kg]
P Pressure [kPa]
P Pressure of the mixture in the bulk gas phase [kPa]
Pi

0 Surface pressure of the component i [kPa]
R Universal gas constant [kJ/(mol K)]
T Equilibrium temperature [K]
wi Molar fraction of the component i
xi Molar fraction of the component i in the adsorbed

mixture
yi Molar fraction of the component i in the bulk gas

mixture
Z Compressibility factor

Greek letters
g i Activity coefficient of component i
fi Fugacity coefficient of component i
fi

0 Fugacity coefficient of the pure component i in the
adsorbed phase at the system temperature and pressure.
This is calculated using Pi0

c Reduced grand potential at equilibrium [mol/kg]
ci Reduced grand potential of component i [mol/kg]
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