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a  b  s  t  r  a  c  t

Understanding  the  control  of any  trait optimally  requires  the  detection  of  causal  genes,  gene  interaction,
and  mechanism  of  action  to discover  and  model  the  biochemical  pathways  underlying  the expressed
phenotype.  Functional  genomics  techniques,  including  RNA  expression  profiling  via  microarray  and  high-
throughput  DNA  sequencing,  allow  for the  precise  genome  localization  of biological  information.  Powerful
genetic  approaches,  including  quantitative  trait  locus  (QTL)  and  genome-wide  association  study  mapping,
link phenotype  with  genome  positions,  yet genetics  is less  precise  in localizing  the  relevant  mechanis-
tic  information  encoded  in DNA.  The  coupling  of salient  functional  genomic  signals  with  genetically
mapped  positions  is an appealing  approach  to  discover  meaningful  gene–phenotype  relationships.  Tech-
niques  used  to define  this  genetic–genomic  convergence  comprise  the  field  of  systems  genetics.  This
short  review  will  address  an  application  of  systems  genetics  where  RNA  profiles  are  associated  with
genetically  mapped  genome  positions  of individual  genes  (eQTL  mapping)  or as  gene  sets  (co-expression
network  modules).  Both  approaches  can  be  applied  for knowledge  independent  selection  of  candidate
genes  (and  possible  control  mechanisms)  underlying  complex  traits  where  multiple,  likely  unlinked,
genomic  regions  might  control  specific  complex  traits.

© 2014  Elsevier  Ireland  Ltd.  All  rights  reserved.
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1. Introduction

No gene acts in isolation. Biological information encoded
in DNA, for example, must first be transcribed into RNA for
which steady-state concentrations are controlled through the
complex biochemistry of distal gene products including trans-
acting regulatory proteins, chromatin remodeling machinery, the
RNA polymerase complex, RNA splicing factors, RNA transport
proteins, and RNA degradation factors. Prior to influencing steady-
state RNA levels of a given gene, each protein factor may  have
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undergone functional modification at the level of protein
translation, post-translational modification, sequestration, or
conformational change. Thus, each and every gene product at birth
is interacting with hundreds of gene products prior to translation
or performing its function as native RNA. Of  course this simple
example does not begin to describe the complex interaction of
mature gene products in the biochemical pathways that control
qualitative and quantitative traits with a range of heritability.

It is now common to measure gene output on a genome scale
for all known genes in an organism to address the complexity of
real-world gene expression. Individual transcript RNA concentra-
tions are determined with global detection techniques such as RNA
hybridization to microarrays or through the conversion of RNA into
DNA and direct sequencing with high-throughput next-generation
sequencers. In the next-generation RNAseq method, specific tran-
script concentrations are determined by mapping reads back to
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a reference genome or transcript assembly, and then counting
molecule occurrence. While more challenging, it is also possible to
profile gene expression at the protein level using proteomic profil-
ing methods. Through comparison of biologically relevant sample
groups, it is routine to identify differentially expressed genes that
are associated with a change in gene expression state. In this way,
information encoded at specific genome positions (i.e. functional
genes) can be associated with relevant biological conditions.

Of course, gene expression varies for each individual in a popu-
lation. Gene expression is initialized by the genetic and epigenetic
background of an individual organism and heavily influenced by
the regulatory context within a cell as well as by external envi-
ronmental factors. It is sometimes possible to associate causal or
nearby polymorphic markers with heritable, quantitative traits.
Quantitative trait locus (QTL) mapping and genome-wide associ-
ation studies (GWAS) use linkage analysis and population genetics,
respectively, to identify genome intervals associated with expres-
sion of phenotype. QTL mapping and GWAS, however, merely
narrow down the genome position to near where the causal vari-
ation is located and rarely identify the causal variation. From a
genomics perspective, genetics reduces the genome to a reasonable
fraction for the discovery of candidate sequences encoding relevant
functional information.

Once the genome fraction controlling the trait is genetically
tagged, the researcher often turns to laborious positional cloning
experiments or selects proximal candidate genes via prior knowl-
edge and intuition. Since some or all of the functions of an individual
gene may  not be known, the candidate gene approach is often
unsuccessful or tempts the researcher to continue to try to fit the
gene into a causal hypothesis, which can waste time and resources.
If successful, the detection of a causal gene might be relevant only
in the mapping population where it was discovered and rarely
provides context of how this genetically relevant genome position
(e.g. large effect QTL) interacts with other genes leading to expres-
sion of a complex trait. Furthermore, it is also necessary fill in the
“missing data” of genetically undetectable genes involved in pheno-
type expression to truly understand the underlying biochemistry
underlying a phenotype. Ideally, the selection of candidate gene
options should be identified in a knowledge independent manner
that maintains gene dependency context, even for those genes that
are “genetically invisible” for which there is not enough power to
measure an effect in a given mapping population.

A subfield of systems biology, systems genetics, provides a pow-
erful approach to merge genomic and genetic data to discover
not only candidate genes underlying the expressed phenotype but
also ascertain the mechanistic context of a gene or gene inter-
action module [1,2]. Systems genetics involves the analysis of
high-dimensional genomic data, thousands of measurements often
in a matrix format, such as RNA expression levels for tens of
thousands of genes in an organism. Gene expression is mapped
to specific genome positions and coded for biological context.
These specific positions can then be phased into genetically derived
genome positions to generate ‘candidate mechanism’ hypotheses
in a monogenic or polygenic context. Two systems genetics meth-
ods that illuminate this powerful approach are described in the
following sections.

2. Systems genetics via eQTL mapping

One method to merge functional genomic data with genetic sig-
nal is through expression quantitative trait locus (eQTL) mapping
[3]. In this approach, applied early in yeast [4], transcriptomes are
profiled using microarrays or direct sequencing (RNAseq) in a well
genotyped, segregating population. RNA expression levels, a col-
lection of quantitative “traits”, are associated with polymorphic

markers identifying cis- and trans-acting positions affecting spe-
cific gene expression. Using the eQTL approach, segregating gene
expression patterns are pinpointed empirically and clues to mech-
anism affecting gene expression are revealed. In Arabidopsis for
example, thousands of eQTLs were identified in a recombinant
inbred line mapping population [5]. In a rice study, the eQTL
approach has been used to identify over 16,000 eQTL control points,
a subset of which corresponded with biomass yield [6]. In a separate
rice eQTL analysis, eQTL hotspots were associated with oxidative
stress [7]. A systems genetics study by Faraji et al. [8] provides an
excellent example of the power of eQTL mapping. They analyzed
mRNA and miRNA expression profile data from tumors from mice
progeny segregating for tumor metastatic potential. Following co-
expression network construction and miRNA eQTL analysis, they
were able to discover specific miRNA controllers of transcriptional
networks underlying metastasis potential in their system. Further-
more, they were able to validate their findings empirically. The
eQTL method points to specific regulatory mechanisms at specific
genome positions (i.e. genome control points of steady state-RNA
levels of Gene X) that may  be responsible for specific traits. When
eQTLs are identified using a population segregating for a trait of
interest, the regulatory mechanisms pointed to by the eQTL can be
extrapolated to understand gene output at the level of steady-state
mRNA.

While extremely powerful, the eQTL approach does have limita-
tions. First, these experiments are very expensive. Each individual
must be phenotyped (RNA profiled) and genotyped in order to map
the eQTL. In the future, it may  be possible to use next-generation
sequencing techniques to cheaply profile the RNA from any sam-
ple, but there will still be a heavy cost in terms of computational
resources to process these Big Data collections. Fortunately, scal-
able computational solutions exist such as iPlant, a computational
discovery environment specifically geared toward solving plant
biology problems [9]. Another limitation is that if the relevant tis-
sue or developmental time point with high impact on phenotypic
expression is not sampled, then the causal eQTLs will not be identi-
fied. This issue can be addressed by including more tissue and time
course measurements in the experimental design phase albeit with
a significant increase in cost. Finally, eQTLs are determined individ-
ually for each transcript and do not immediately identify gene–gene
dependency, a key concern for complex traits, unless a common
control trans-acting control point is mapped for several loci. Is there
another systems genetics approach to couple gene (co-)expression
and with genetically mapped loci?

3. Systems genetics via co-expression network mapping to
genetic positions

An alternate, possibly parallel, approach is to determine what
gene–gene relationships are possible in an organism by building
gene interaction networks from public (or private) gene expres-
sion profiles, even if the data that was  obtained from a genetically
undefined system. These gene dependencies can then be tested
for correspondence with genetic networks obtained from rigorous
genetic analyses. For example, gene dependencies can be identified
through the construction of gene co-expression networks (GCNs)
[10]. RNA profiles have been generated under myriad of experimen-
tal conditions and genetic backgrounds for numerous plants. As of
this writing, there are over 71,000 Gene Expression Omnibus public
dataset records for green plants (Viridiplantae; taxonomy ID 33090
[11]). On a per-organism basis, these RNA profiling experiments can
be repurposed to identify gene co-expression relationships in the
form of GCNs.

Plant GCNs and protein interaction networks (e.g. [12]) have
been constructed for numerous species resulting in numerous



Download English Version:

https://daneshyari.com/en/article/2017053

Download Persian Version:

https://daneshyari.com/article/2017053

Daneshyari.com

https://daneshyari.com/en/article/2017053
https://daneshyari.com/article/2017053
https://daneshyari.com

