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A B S T R A C T

Knowing dew point pressure considers as one of the preliminary requirements in retrograde gas
condensate reservoir simulations. When the pressure declines below the dew point pressure, the
condensate dropouts form, which could lead to a substantial decrease in gas relative permeability and
well deliverability. Differentmethods such as equation of states, empirical correlations and experimental
procedures have been proposed to determine the dew point pressure. However, due to their convergence
problem, being expensive and time consuming, great efforts have been taken to develop an alternative
method. In this study, a new method based on artificial neural network has been developed and
optimized by genetic algorithm as an evolutionary technique. A data set consists of 308 sample collected
from different sources and literature including one of Iranian gas-condensate field is used. Reservoir
temperature, mole percentage of gas components and heavy fractions properties were considered as
input parameters to this model. The performance of the proposedmodel was comparedwith some of the
common correlations and Peng–Robinson equation of state. The results confirmed the accuracy and
capability of this model in determination of dew point pressure based on 2.46%, 3.66%, 95.91%, 0.02% and
24.39% as average absolute deviation, root mean square error, correlation of determination, minimum
and maximum percentage error; respectively. The sensitivity analysis is also performed on variables to
determine the impact and importance of each parameter on prediction of dew point pressure. The results
show that plus fraction properties and C3–C4 fraction have the greatest positive and negative impacts on
estimation of dew point pressure; respectively.

ã 2014 Elsevier B.V. All rights reserved.

1. Introduction

Gas condensate reservoirs are recognized as valuable, clean and
safe source of energy with comparison to other fossil fuels.
Therefore, one of the concerns in petroleum industry is finding the
most efficient way to produce this kind of energy source [1,2].
Design of processing and transportation facilities of gas con-
densates and performance optimization relies on a good under-
standing and knowledge of phase diagram of the system [3–5].
Since the dew point pressure (DPP) is one of the key parameters in
retrograde phase diagram, accurate evaluation of this parameter is
crucial in order to have accurate calculations in gas reservoir
performance and fluid characterization [3,6,7].

At initial reservoir conditions a gas condensate systemexists as a
singlephasefluidandcontains short chainhydrocarbonswithheavy

ends. However, due to presence of less heavy hydrocarbons in
condensate gascompared to crudeoil systems, it hasa smaller phase
diagram than that of oil. The critical point is also located at down left
sideof thephaseenvelope.Temperature ingascondensatereservoirs
lies between critical temperature and cricondentherm. When
reservoir pressure declines below the dew line, it leads to separate
this fluid into two phases, a gas phase and a liquid phase, which is
known as retrograde condensate [6–8]. Forming the condensate
phase and its accumulation nearby thewellbore plays an important
role on reduction of well deliverability. Some authors reported the
severity of this decline bya factor of two to four [9–17]. On the other
hand, understanding the causes of the production decline of a gas
condensate well would be helpful to decide right action to run. For
instance, gas production decline might be due to either mechanical
formation damage or condensate blockage that each one requires
their own approaches to tackle with [6]. Thus, estimation of dew
point pressure is crucial to better evaluate reservoir conditions.

Different methods such as experimental methods, equation of
states (EOS), empirical correlations and recently artificial

* Corresponding author at: Enhanced Oil Recovery (EOR) Research Centre, School
of Chemical and Petroleum Engineering, Shiraz University, P.O. Box 7134851154,
Shiraz, Iran. Tel.: +98 917 1898307.

E-mail address: mriazi@shirazu.ac.ir (M. Riazi).

http://dx.doi.org/10.1016/j.fluid.2014.11.027
0378-3812/ã 2014 Elsevier B.V. All rights reserved.

Fluid Phase Equilibria 387 (2015) 38–49

Contents lists available at ScienceDirect

Fluid Phase Equilibria

journal homepage: www.elsevier .com/ locate /fluid

http://crossmark.crossref.org/dialog/?doi=10.1016/j.fluid.2014.11.027&domain=pdf
mailto:mriazi@shirazu.ac.ir
http://dx.doi.org/10.1016/j.fluid.2014.11.027
http://dx.doi.org/10.1016/j.fluid.2014.11.027
http://www.sciencedirect.com/science/journal/03783812
www.elsevier.com/locate/fluid


intelligence with their own benefits and drawbacks have been
employed to estimate the dew point pressure [7]. Generally
constant composition expansion (CCE) and constant volume
depletion (CVD) tests are used in order to estimate the dew point
pressure [2,6]. However, CVD test is performed for gas condensate
and volatile oil because these fluids experience a considerable
compositional change when the pressure dropped below the
saturation pressure. Moreover, CVD test is performed in such a
manner as to simulate depletion of the actual reservoir by
assuming immobility of dropped out condensate in porous media
therefore the results of this test is more similar to the gas
condensate reservoir conditions [18]. In this test, the volume of a
high pressure PVT cell is kept constant as a result of expelling the
excess gas at each pressure depletion level, one can determine the

dew point pressure as well as thermodynamic equilibrium and
change of fluid composition [4,19]. Despite the accuracy and
reliability of experimental methods in determining PVT properties
such as dew point pressure, these approaches suffer also from high
cost and being time consuming. In addition, the difficulty in
obtaining of appropriate samples and subjection of experimental
measurements into many errors are fundamental drawbacks of
using such methods [6,7,16,17,20]. Using EOS, as a most common
thermodynamic method, is another way to determine the dew
point pressure. Generally EOSs are developed for pure compo-
nents, therefore applying those to multi components such as
petroleum fluids bring some inaccuracy. This point highlights the
impact of proper characterization of plus fractions as the main
source of uncertainty in EOSs predictions of reservoir fluid
behavior. Calibration of EOSs to experimental data, to some extent,
helps to tackle with these uncertainties in fluid properties.
However, due to convergence problem near the critical point,
prediction of thermodynamic properties of reservoir fluid consid-
ered as a major limitation of using EOSs [2,7,15–18,20–27]. Other
predictive methods to determine dew point pressure are empirical
correlations. They are relatively easy to use, however, they are not
accurate at high temperature and pressure conditions. Different
parameters used in these correlations include temperature,
hydrocarbon composition and plus fraction properties. Recently,
different empirical correlations were developed to determine dew
point pressure by various authors [7,15–17,20,28,29]. In recent
years, usage of artificial intelligence techniques specifically neural
network with their unique ability to derive relation from complex
data has been increased. Due to complicated nature of retrograde
condensation and capability of artificial neural networks (ANN) on
solving non-linear and non-parametric problems such as dew
point pressure determination, these massive parallel processing
techniques play an important role in petroleum engineering
[16,17,20,21,30–32].

Various researchers have been tried to better estimate DPP by
employing ANN and evolutionary techniques. Improved neural
network base model of González et al. and neural fuzzy system of
Nowroozi et al. are among the most well-known investigations in
this regards. Rostami and Manshad also studied the impact of
evolutionary techniques on accuracy of DPP data, which were
extracted from ANN model in which Gaussian process regression
and particle swarm optimization were used [7,2,33].

In this study, a new intelligence method in purpose to predict
dew point pressure as a function of temperature, gas composition
and plus fraction properties is used. To get better results, themodel
was optimized by genetic algorithm (GA) as an evolutionary
technique. The model performance was evaluated by comparing
the results with the performance of Peng–Robinson equation of
state (PR-EOS) (see Appendix A) and some general correlations for
dew point pressure prediction such as Nemeth–Kennedy and
Elsharkawy [15,28,34] (see Appendix B). The results that will be
discussed in next sections proves the robustness and the accuracy
of the proposed GA–ANN model.

2. Artificial neural networks

Artificial neural networks are powerful systems, which are
inspired by the biological nervous system and aimed to simulate
the learning process in the human brain. The ANNs have a history
of more than 70 years, however their applications have been
developed andmatured in the past two decades [35–43]. ANNs are
composed of interconnected artificial neurons and characterized
by their architecture (e.g., the numbers of layers), network
topology (feed-forward or recurrent) and learning algorithm
(supervised or unsupervised) [44]. They include an input layer,
one or more hidden layers and an output layer [45–47]. Each layer

Nomenclatures

Acronyms
AAD Average absolute deviation
ANN Artificial neural network
BP Back propagation
CCE Constant composition expansion
CVD Constant volume depletion
DPP Dew point pressure
EOS Equation of state
GA Genetic algorithm
LM Levenberg–Marquardt
MSE Mean square error
PR-EOS Peng–Robinson equation of state
RMSE Root mean square error
SPSS Statistical Package for the Social Sciences

Variables
F Fahrenheit
MW Molecular weight
N Number of samples
P Absolute pressure
Pd Dew point pressure
R2 Correlation of determination
R Universal gas constant
Sp.Gr Specific gravity
T Absolute temperature
V Volume
f Fugacity
k Equilibrium ratio
kij Binary coefficient
xi Composition of the liquid phase
yi Composition of the vapor phase
zi Overall composition

Greek letters
a Dimensionless factor
g Specific gravity
’ Fugacity coefficient
v Acentric factor

Subscripts
i ith composition
j jth composition
e Experimental value
p Predicted value
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