EI SEVIED

Contents lists available at SciVerse ScienceDirect

Plant Science

journal homepage: www.elsevier.com/locate/plantsci

Review

Mesophyll diffusion conductance to CO₂: An unappreciated central player in photosynthesis

Jaume Flexas^{a,*}, Margaret M. Barbour^b, Oliver Brendel^{c,d}, Hernán M. Cabrera^{a,e}, Marc Carriquí^a, Antonio Díaz-Espejo^f, Cyril Douthe^{c,d,j}, Erwin Dreyer^{c,d}, Juan P. Ferrio^g, Jorge Gago^a, Alexander Gallé^a, Jeroni Galmés^a, Naomi Kodama^h, Hipólito Medrano^a, Ülo Niinemetsⁱ, José J. Peguero-Pina^a, Alicia Pou^a, Miquel Ribas-Carbó^a, Magdalena Tomás^a, Tiina Tosensⁱ, Charles R. Warren^j

- ^a Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
- ^b Faculty of Agriculture, Food and Natural Resources, The University of Sydney, Private Bag 4011, Narellan, NSW 2567, Australia
- ^c INRA, UMR 1137, Ecologie et Ecophysiologie Forestières, F-54280 Champenoux, France
- ^d Université de Lorraine, UMR 1137, Ecologie et Ecophysiologie Forestières, Faculté des Sciences, F-54500 Vandoeuvre, France
- ^e Centro de Ecología Aplicada Ltda., Av. Suecia 3304, Ñuñoa, Santiago, Chile
- ^f Instituto de Recursos Naturales y Agrobiología, IRNAS-CSIC, Apartado 1052, 41080 Sevilla, Spain
- ⁸ Department of Crop and Forest Sciences, AGROTECNIO Center, Universitat de Lleida, Avda. Rovira Roure 191, 25198 Lleida, Spain
- ^h Agro-Meteorology Division, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba 305-8604, Japan
- ¹ Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia

^j School of Biological Sciences, The University of Sydney, Sydney, NSW 2006, Australia

ARTICLE INFO

Article history: Received 3 February 2012 Received in revised form 8 May 2012 Accepted 20 May 2012 Available online 26 May 2012

Keywords: Aquaporins Climate change Conductance Diffusion Leaf anatomy Plant hydraulics Photosynthesis

ABSTRACT

Mesophyll diffusion conductance to CO_2 is a key photosynthetic trait that has been studied intensively in the past years. The intention of the present review is to update knowledge of g_m , and highlight the important unknown and controversial aspects that require future work. The photosynthetic limitation imposed by mesophyll conductance is large, and under certain conditions can be the most significant photosynthetic limitation. New evidence shows that anatomical traits, such as cell wall thickness and chloroplast distribution are amongst the stronger determinants of mesophyll conductance, although rapid variations in response to environmental changes might be regulated by other factors such as aquaporin conductance.

Gaps in knowledge that should be research priorities for the near future include: how different is mesophyll conductance among phylogenetically distant groups and how has it evolved? Can mesophyll conductance be uncoupled from regulation of the water path? What are the main drivers of mesophyll conductance? The need for mechanistic and phenomenological models of mesophyll conductance and its incorporation in process-based photosynthesis models is also highlighted.

© 2012 Elsevier Ireland Ltd. All rights reserved.

Contents

1.	Introd	luction	71
2.	How o	different is g _m among phylogenetically distant groups and how have mechanisms controlling g _m evolved?	71
3.	New e	evidence as for the main determinants of g _m	72
	3.1.	Changing the nature of the diffusing molecule: Carbonic anhydrases	72
	3.2.	Changing the nature of the diffusion medium: Aquaporins	72
	3.3.	Changing the diffusing distance: Anatomical properties of leaves and cells	75
4.	Whicl	h environmental conditions affect g_m ?	75
	4.1.	Acclimation to and recovery from drought and salinity	75
	4.2.	Nutrient stress	76
	4.3.	CO ₂ concentration around leaves	76

^{*} Corresponding author at: Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia, Universitat de les Illes Balears. Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Balears, Spain. Tel.: +34 971 172365; fax: +34 971 173184. *E-mail address:* jaume.flexas@uib.es (J. Flexas).

^{0168-9452/\$ –} see front matter © 2012 Elsevier Ireland Ltd. All rights reserved. http://dx.doi.org/10.1016/j.plantsci.2012.05.009

5. How important is <i>g</i> _m in limiting photosynthesis?		77
	5.1. Photosynthesis limitations in response to environmental variables	77
	5.2. Photosynthesis limitations within complex canopies	77
6.	Modeling and including g _m in photosynthesis models	78
7.	Can mesophyll conductance be uncoupled from regulation of the water path?	79
	7.1. Co-regulation of g _m and stomatal conductance	79
	7.2. Co-regulation of g _m and hydraulic conductance in the mesophyll	79
8.	Concluding remarks and future prospects	81
	Acknowledgements	81
	Appendix. Supplementary data	81
	References	81

1. Introduction

Photosynthesis in plants has been considered for decades to be limited only by two factors: the velocity of diffusion of CO_2 through stomata and the capacity of photosynthetic machinery to convert light energy to biochemical energy and fix CO_2 into sugars. Diffusion is a passive physical process, but in plants can be regulated. According to Fick's law, diffusion depends on substance (e.g. CO_2) diffusivity, temperature, the nature (mainly viscosity) of the media in which diffusion occurs (e.g. water, air, etc.), and the distance of diffusion. The mesophyll pathway comprises a series of 'physical barriers' to CO_2 diffusion, including air, cell walls, lipid membranes and liquid cytoplasm and stroma. The 'physical barriers' differ in nature and size (i.e. 'distance') among leaves, and thus there is a large variation among leaves in diffusion conductance to CO_2 in the mesophyll (g_m).

Early studies already suggested that the diffusion of CO₂ from sub-stomatal cavities to the sites of carboxylation inside chloroplasts could limit photosynthesis (e.g., [1–3]). These early studies and most subsequent examinations of g_m are dependent on several methods for the estimation of g_m – including a method based on ¹³C-discrimination during photosynthesis[4], a method combining chlorophyll fluorescence and gas exchange measurements [5,6] and model-based methods [6–8]. For details on methods for g_m estimation, the required precautions when using them and specific strategies of adjustment, see references [9–11]. The pioneering early studies [1–3] and a raft of subsequent studies have highlighted that g_m is the third major player in the process of photosynthesis, together with stomatal conductance and biochemical capacity.

The current understanding on g_m has been recently reviewed [12]. In addition, specific reviews on the mechanisms regulating g_m [13], and on the ecophysiological and ecological significance of g_m [14–16] have been published. These papers are recommended as the best introduction to the importance of g_m in plant physiology. As there has been rapid gain in understanding of g_m , the aims of the present paper are: (1) to update information accumulated after the recent reviews; (2) to discuss the most obscure/controversial aspects on g_m function and regulation, such as its response to CO₂, or how much it limits photosynthesis; and (3) to highlight the obvious gaps in knowledge on this subject and the future research needs.

2. How different is g_m among phylogenetically distant groups and how have mechanisms controlling g_m evolved?

The rate of diffusion conductance to CO_2 in the mesophyll (g_m) has now been estimated for more than 100 species, and it is now possible to search for phylogenetic/evolutionary patterns. The vast majority of estimates of g_m are for Spermatophytes [14] (angiosperms and gymnosperms), with only very few data for liverworts and hornworts [17]. Most surprisingly there are

Fig. 1. Mesophyll conductance is greatest the more a species is phylogenetically evolved. Average \pm S.E. values for g_s and g_m in different pooled groups of plants. Data from liverworts and hornworts from [17], data for all other groups from [14]. Only data at light saturation and ambient temperature were considered. Capital letters indicate differences between means for g_s and lower case letters for g_m (Tuckey test, p < 0.05, n = 3, 21, 2, 11, 25 and 6 for grasses, herbs, semi-deciduous, deciduous, evergreen and confier species, respectively).

no measurements available for phylogenetically intermediate groups such as mosses, lycophytes, equisetophytes, or ferns. This constitutes a serious gap in our knowledge that precludes driving any broad conclusion as for the evolution of mechanisms controlling $g_{\rm m}$.

Some valuable information can nevertheless be obtained by comparing the existing data for liverworts and hornwort gametophytes with those for Spermatophytes belonging to different phylogenetic and/or functional groups (Fig. 1). At first sight, it is evident that there are variations in the average rate of g_m among different plant groups, and that these variations are more closely correlated with evolutionary advancements than stomatal conductance (g_s) which, indeed, did not show any significant difference among groups despite some apparent declining tendency from herbs and grasses to conifers. The largest values for g_m are found among non-woody angiosperms, whereas grasses present somewhat higher g_m values than annual dicots (Fig. 1). The lowest values are found in liverworts and hornworts for which g_s is set as zero as they lack stomata, and CO₂ has to diffuse through the cuticle and epidermis. Among Spermatophytes, conifers show the lowest values. An evolutionary trend towards larger g_m than g_s values is plausible given that angiosperms are evolutionary more recent than gymnosperms and non-Spermatophytes (the earliest fossil records for conifers dating back to 290 Myr as compared Download English Version:

https://daneshyari.com/en/article/2017286

Download Persian Version:

https://daneshyari.com/article/2017286

Daneshyari.com