
Fluid Phase Equilibria 393 (2015) 7–25

Contents lists available at ScienceDirect

Fluid Phase Equilibria

journa l homepage: www.e lsev ier .com/ locate / f lu id

General algorithm for multiphase equilibria calculation at given
volume, temperature, and moles

Tereza Jindrová, Jiří Mikyška ∗
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a b s t r a c t

We have developed a fast and robust algorithm for the general �-phase equilibrium calculation at con-
stant volume, temperature and moles, which is based on the direct minimization of the total Helmholtz
energy of the mixture with respect to the mole- and volume-balance constraints. The algorithm uses the
Newton–Raphson method with line-search and modified Cholesky decomposition of the Hessian matrix
to produce a sequence of states with decreasing values of the total Helmholtz energy. To initialize the algo-
rithm, an initial guess is constructed using the results of constant-volume stability testing. As the number
of phases is not known a priori, the proposed strategy is based on repeated constant-volume stability
testing and constant-volume phase-split calculation until a stable �-phase state is found. The perfor-
mance of the algorithm is shown on several examples of two-, three- and even four-phase equilibrium
calculations of multicomponent mixtures under various conditions.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Studying multiphase equilibrium of multicomponent mix-
tures and development of robust and efficient algorithms for its
computation play important roles in large-scale compositional
hydrocarbon reservoir simulations. While there was a main focus
on two-phase compositional modelling in the past, nowadays,
there is an increasing interest in three and generally multi-phase
compositional models which is motivated by CO2 sequestration
[12], processes related to CO2 or steam enhanced oil recovery [1]
or asphaltene precipitation from bitumens [14,15].

Injecting a pure component (e.g. CO2) into a reservoir, it may dis-
solve in the reservoir fluid or it can mix and the mixture can split
into two or more phases. Let us consider a closed system of total
volume V containing a multicomponent mixture with mole num-
bers N1, . . ., Nn at temperature T. To find out whether the system is
under given conditions in single-phase or splits into two phases, the
single-phase stability at constant volume, temperature, and moles
(the so-called VT-stability) is solved. In case of phase-splitting, the
two-phase split calculation at constant volume, temperature, and
moles (the so-called VT-flash) is performed to establish amounts
and compositions of both phases, and consequently the equilib-
rium pressure of the system is calculated from the equation of
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state. In our previous work [22,23,9], these problems were formu-
lated for two-phase systems and the algorithms were proposed and
tested on a number of examples. In [10], the results were partially
extended to three phases for CO2–H2O system and the perfor-
mance of the algorithm was shown on several examples of two- and
three-phase equilibrium calculations of CO2–H2O mixtures under
geologic carbon storage conditions. In this work, we extend the
method and propose a general strategy for �-phase equilibrium
computation at constant volume, temperature, and moles, where
� ∈ N is the number of phases.

We use the formulations of phase stability and phase equi-
librium computation which are based on VT variables (constant
volume, temperature, and moles). This approach is alternative to
the traditional formulation based on PT variables (constant pres-
sure, temperature and chemical composition), which has been
widely used in many applications including compositional reser-
voir simulation. Both the stability testing and the phase-split
computation can be formulated either as local or global minimi-
zation problems, or as problems of direct solution of a nonlinear
system of algebraic equations. Depending on the problem formu-
lation and used variables, various methods have been developed
to find the local minima and the global minimum of the tangent-
plane-distant function in the stability testing [17,19,6], and the
global minimum of either the Gibbs energy [18,6,16], or the
Helmholtz energy [22,9] in computation of phase-equilibria. The
reader is referred to [32] for a recent review of various global opti-
mization methods for phase equilibrium calculations.
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Besides the PT-formulations, formulations involving other inde-
pendent variables appear in the literature. The formulations in
which temperature and concentrations are the independent vari-
ables were used by Nagarajan et al. in [26] for the investigation of
phase stability and flash equilibrium calculation, and in [27] for the
critical point calculation. Using volume as an independent variable
in the PT-flash has also been shown advantageous by Pereira et al. in
[29]. Although in these works the independent variables are tem-
perature and concentrations or temperature, volume, and moles,
respectively, the problem specification variables are still pressure,
temperature, and composition. No matter how wide-spread the
use of the PT-specification variables is, this approach has limita-
tions which have already been noticed in the previous work. In
the PT-variables specification, pressure is specified and volume is
computed by inverting of the equation of state. In case of cubic
equations of state (e.g. the Peng–Robinson EOS), the problem of
multiple roots of the equation occurs; there may exist up to three
different roots from which one is selected, usually the one with the
lowest value of the Gibbs energy. In contrast, in the VT-approach
volume of the cell is given and pressure can be directly computed
from the equation of state without the need for inversion of the
equation of state. In the VT-formulation, the problem of root selec-
tion is completely avoided. This is even more important when using
non-cubic equation of state (e.g. the Cubic-Plus-Association EOS)
for which the number of roots is not known a priori.

To illustrate another shortcoming of PT variables, let us consider
pure CO2 at temperature T = 280 K and saturation pressure Psat(T)
corresponding to the temperature T = 280 K. Using the PT variables,
one cannot decide whether the system occurs in vapor or liquid
state, or as a mixture of both, because all two-phase states and
both saturated gas and saturated liquid occur at the same pres-
sure Psat(T), temperature, and moles. Therefore, PT-stability and
PT-flash cannot distinguish between these states, but VT-stability
and VT-flash can, because these states have different volumes. This
example shows that the PT-stability and PT-flash problems are not
well posed since the volume of the system is not uniquely deter-
mined by specifying the pressure, temperature, and moles. On the
other hand, if volume, temperature, and moles are specified, the
equilibrium pressure is given uniquely by the equation of state.
The ambiguity of volume is not limited to pure component. In
[10] and in this work, we present non-trivial examples of multi-
component mixtures which exhibit in three- or even four-phase
the same behaviour as the pure substances at saturation pressure.

The phase stability testing and phase equilibrium calculation
are the integral part of the reservoir simulation. In compositional
models the stability and flash formulations are based virtually
exclusively on the PT-variables specification [4,8,21,24,25]. To the
best of our knowledge, the only use of the VT-flash in compositional
simulation has been reported in [30]. In [30] there is an example
which the codes based on the PT-variables specification gener-
ally fail to compute because of the ambiguity in volume for given
pressure, temperature, and overall composition. In the VT-flash for-
mulation, the problem does not appear at all. This motivates our
interest in the phase equilibrium calculation using the VT-variables
specification that does not suffer from these issues.

To solve phase equilibria in other variables specifications (like VT
in our case), Michelsen [20] proposed an approach based on nested
iterations; the PT-flash algorithm is used in the inner loop while
pressure is iterated in the outer loop until the correct pressure value
is found for which the respective volume constraint is satisfied.
This approach was used in [5] to find the conditions of thermody-
namic equilibrium in systems subject to gravitational fields and in
[3] to study segregation in centrifugal fields. This approach allows
to reuse existing implementations of the PT-flash but is not com-
putationally efficient since for a single computation of the VT-flash
many computations of the PT-flash have to be performed before the

correct value of pressure is found. In [22] it has been shown that
when the VT-flash problem is formulated directly using the mini-
mization of the Helmholtz energy, the computational efficiency of
the successive iteration method is about the same as for its PT-
based counterpart. Moreover, as the nested loop approach uses the
PT-flash in the inner loop, the method may not provide the correct
phase volumes when the volume is ambiguous.

In [9] we have proposed a numerical algorithm for constant-
volume two-phase split calculation which is based on the
constrained minimization of the total Helmholtz energy of the
mixture. The algorithm uses the Newton–Raphson method with
line-search and the modified Cholesky decomposition of the Hes-
sian matrix to produce a sequence of states with decreasing values
of the total Helmholtz energy. Fast convergence towards the exact
solution is ensured due to the Newton–Raphson method. Further-
more, as the method guarantees decrease of the total Helmholtz
energy of the system in every iteration, it always converges to a
state corresponding to at least a local minimum of the energy. To
initialize the algorithm, the results of the constant-volume stabil-
ity algorithm, which has been developed in [23], are used. In this
work, we extend the method and propose a general strategy for �-
phase equilibrium computation at constant volume, temperature,
and moles, where � ∈ N is the number of phases. As the number
of phases is not necessarily known a priori, the proposed strat-
egy is based on the repeated constant-volume stability testing and
the constant-volume phase-split calculation until a stable �-phase
state is found. The performance of the algorithm is shown on several
examples of two-, three- and even four-phase equilibrium calcu-
lations of multicomponent mixtures under various conditions. The
basic approach adopted here is close to that of Cabral et al. [2] where
the direct minimization of the Helmholtz energy is used to solve
thermodynamic equilibrium in a system with various bulk and
adsorbed phases. However, in [2] the authors claim that because
pressure can be negative during the course of the iterations, their
algorithm requires that a part of the computation be performed in
the complex arithmetics. On the other hand, our algorithm uses
formulation that can be performed in the real arithmetic. The use
of complex numbers is thus avoided.

The paper is structured in the following way. In Section 2,
we derive the equilibrium conditions in a multiphase system
which is described using the Helmholtz energy. In Section 3, the
constant-volume stability testing is applied on a multicomponent
mixture in a �-phase state and a method of introducing a new
phase is described in the case that the �-phase state is unsta-
ble and splits into � + 1 phases. Finally, we propose a fast and
robust numerical algorithm for the multiphase split calculation
based on the direct minimization of the total Helmholtz energy
of the �-phase system. At the end of the section, we summarize
essential steps of the algorithm and propose the general strat-
egy for constant-volume phase-equilibria computation based on
repeated stability testing and phase-split calculations. In Section 4,
we present several numerical examples showing the performace,
robustness and efficiency of the proposed strategy for multiphase
equilibrium computation at constant volume, temperature, and
moles. In Section 5, we discuss the results and draw some conclu-
sions. In Appendix A, we provide details of the Peng–Robinson and
Cubic-Plus-Association equations of state [28,13] that were used in
this work. In Appendix B, we provide the details of the modified
Cholesky factorization that is used in our method.

2. Multiphase equilibrium conditions for multicomponent
system

Consider a closed system containing a mixture of n components
with mole numbers N1, . . ., Nn occupying total volume V at tem-
perature T. The system is described using the Helmholtz energy
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