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A B S T R A C T

A quantitative structure-property relationship (QSPR) study was performed to correlate the logarithmic
values of liquid vapor pressure of polychlorinated diphenyl ethers (PCDEs) with their molecular
structures. The entire set of 106 PCDEs and diphenyl ether was divided into a training set of 72 samples
and a test set of 35 samples using the DUPLEX algorithm. An extended set of molecular descriptors was
calculated to represent the molecular structures by DRAGON software. Multiple linear regression (MLR)
was used to select descriptors and develop models. A three-descriptor equation was obtained for the
training set, with a squared correlation coefficient (R2) of 0.997 and a standard error(s) of 0.069. The
robustness and predictive performance of the proposed model were assessed by different approaches,
including leave-many-out cross-validation, Y-randomization test, and external validation through test
set. Satisfactory results of R2 = 0.995 and a mean absolute error of 0.066 for the test set confirmed the
model being very useful to predict the vapor pressure of PCDEs. Furthermore, the applicability domain of
the models was analyzed based on the Williams plot.

ã 2015 Elsevier B.V. All rights reserved.

1. Introduction

Polychlorinated diphenyl ethers (PCDEs) are a group of
halogenated aromatic compounds (Fig. 1), which are structurally
located between polychlorinated biphenyls (PCBs) and poly-
chlorinated dibenzofurans (PCDFs). They are mainly originated
from by-products of technical chlorophenols and chlorinated
phenoxyacetic acids, fly ashes, transformer fluids, wood preser-
vatives, incomplete combustion intermedia, and flues of munici-
pal waste incinerators [1]. However, their ubiquitous
environmental occurrence is basically the result of their presence
as impurities in chlorophenol preparations, where they have been
identified at levels of 100–1000mg/kg [2]. They have been
detected in a wide range of environmental and biological samples
including sediments, fish, birds, marine mammals, edible marine
organisms, and human adipose tissues [3–6]. Previous studies
have shown that PCDEs have similar toxic properties to PCBs [7].
They can induce cytochrome P-450-dependent monoxygenase
activity and have a broad spectrum of toxicity [2]. Therefore, they

are also regarded as a type of persistent indicator molecules for a
global pollution of the environment by organochlorine com-
pounds [8]. PCDEs have received more and more concerns
surrounding their potential to persist and bioaccumulate in the
environment.

Liquid vapor pressure (PL) is an important factor for assessing
the transport, distribution, and fate of organic pollutants in the
environment. For example, the PL of organic pollutants determines
their distribution between the soil and the atmosphere. Pollutants
with PL of less than 10�5 Pa exist almost entirely as molecules
adsorbed on the solid airborne particles, while compounds with PL
between 10�2 and 10�5 Pa tend to concentrate more in a gas phase
rather than airborne solid particles, soil or water [9]. The PL data
are also used for the estimation of air–water partition coefficient,
enthalpy of vaporization, flash point, and some other important
physicochemical properties of compounds [10]. In addition, the PL
plays a significant role in gas separation, fire and explosion
prevention, process engineering and control [11]. However,
experimental PL measurement of the ever-growing number of
actual and potential chemicals is both time-consuming and
expensive.

Alternatively, the quantitative structure-property relationship
(QSPR) approach is highly promising to estimate the PL based on
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descriptors derived solely from the molecular structure to fit
experimental data. The QSPR approach is based on the assumption
that the variation of the behavior of the compounds, as expressed
by any measured physicochemical properties, can be correlated
with numerical changes in structural features of all compounds
[12–20]. The advantage of this approach lies in the fact that it
requires only the knowledge of the chemical structure and is not
dependent on any experimental properties. Once a correlation is
established and validated, it can be used for the prediction of the
property of new compounds that have not been synthesized or
found. Thus, the QSPR approach can expedite the process of
development of new molecules and materials with desired
properties. To support this development, Organization for
Economic Co-operation and Development (OECD) drawn up the
following principles for the validation of QSPR models [21]: (i) a
defined endpoint, (ii) an unambiguous algorithm, (iii) a defined
domain of applicability, (iv) appropriate measures of goodness-of-
fit, robustness and predictive power and (v) a mechanistic
interpretation, if possible.

Many QSPR models have been already developed for the PL
[1,9,22–32] and, some of them, for PCDEs. Liang and Gallagher [22]
proposed a QSPR approach to predict logarithmic units of PL
(log PL) from computationally derived molecular descriptors for a
set of 479 compounds including acids, alcohols, aldehydes,
alkanes, alkenes, alkynes, amines, aromatic compounds and
polycyclic aromatic hydrocarbons (PAHs), dibenzofurans, dioxins,
ethers, esters, ketones, nitriles and other nitrogen-containing
compounds, polychlorinated biphenyls (PCBs), and sulfur-con-
taining compounds. The authors developed a seven-descriptor
model with R2 = 0.960, Q2 = 0.957 and s =0.534 using multiple
linear regression (MLR) method. Chen et al. [23] reported a QSPR
study on the prediction of log PL for the polychlorinated dibenzo-p-
dioxins and dibenzofurans (PCDD/Fs) using partial least-squares
(PLS) regression. The obtained model with 12 descriptors and one
latent vector was characterized by satisfactory goodness-of-fit
(R2 = 0.986 and Q2 = 0.963). Katritzky et al. [24] used the MLR
method to predict log PL for hydrocarbons, halogenated hydro-
carbons, O- and N-containing compounds. A five-descriptor
equation with R2 = 0.937, Q2 = 0.936 and s =0.366 was obtained.
Öberg [28] also published a study on predicting log PL of
halogenated diphenyl ether congeners (PCDEs and PBDEs) using
molecular descriptors. Zeng et al. [25] established a QSPR model
with R2 = 0.991 and s = 0.112 to predict log PL of PCDEs using the
position of Cl substitution (PCS) methods. All these models were
characterized by good R2 and s; but few of them fit all OECD
standards and can be used.

This paper aimed to develop fully validated QSPR models to
predict the PL of 106 PCEDs respecting all OECD principles
including the determination of their applicability domains.
Molecular structures of PCDEs were modeled by molecular
mechanics and molecular descriptors were derived from the
optimized structures to correlate with the log PL. A QSPR model
was obtained using the MLR method. The robustness and

predictive ability of the obtained model were fully assessed by
different approaches, including leave-many-out cross-validation,
Y-randomization test, and external validation through test set.
Additionally, the applicability domain (AD) of the model was
analyzed based on the Williams plot.

2. Materials and method

2.1. Dataset

The experimental values of log PL (Pa, 25 �C) of the 106 PCDEs
and diphenyl ether were taken from Ref. [8], which ranged from
0.38 to �5.80 logarithmic units (Table 1).

2.2. Descriptor generation

The chemical structure of each compound was sketched using
the Hyperchem program [33] and preoptimized using MM+
molecular mechanics method (Polak–Ribiere algorithm). The final
geometries of the minimum energy conformation were obtained
by the semi-empirical AM1 method at a restricted Hartree–Fock
level with no configuration interaction, applying a gradient norm
limit of 0.03 kcal Å�1mol�1 as a stopping criterion. Then totally
1664 molecular descriptors for each compound were calculated
from the optimized geometries using the DRAGON software [34].
These descriptors include (1) 0D-constitutional (atom and group
counts); (2) 1D-functional groups and atom centered fragments;
(3) 2D-topological, BCUTs, walk and path counts, autocorrelations,
connectivity indices, information indices, topological charge
indices, and eigenvalue-based indices; and (4) 3D-Randic molecu-
lar profiles from the geometry matrix, geometrical, WHIM, and
GETAWAY descriptors.

To reduce redundant and useless information, constant or near
constant values and descriptors found to be highly correlated
pairwise (one of any two descriptors with a correlation greater
than 0.99 [35]) were removed. Furthermore, the rug-like
descriptors (including GVWAI-80, Neoplastic-80, and Infective-
80) were excluded. Finally, 575 descriptors were remained to
undergo subsequent descriptor selection.

2.3. Dataset splitting

The dataset was divided into training and test sets by the
DUPLEX algorithm [36] combined with principal component
analysis (PCA) due to its easy implementation and its good
performance in the selection of representative training set
samples. This algorithm proceeds as follows: first the two points
which are furthest away from each other are selected for the
training set; from the remaining points, the two objects which are
furthest away from each other are included in the test set; then the
remaining point which is furthest away from the two previously
selected for the training set is included in the training set. The
procedure is repeated selecting a single point for the test set which
is furthest from the existing points in that set. Following the same
procedure, points are added alternately to each set. Finally, points
representing both training and test set were distributed uniformly
within the whole space which is occupied by the entire dataset.
Therefore, it guarantees that the composition of the training set
and the test set is representative, at the same time avoids the
unbalance of the two datasets. The PCA was first performed based
on the 575 descriptors of the complete dataset, and the obtained
principal components were put into the DUPLEX algorithm to
select a training set of 72 compounds and a test set of
35 compounds.
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Fig. 1. The generic structure of PCDEs.
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