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a b s t r a c t

An increasing body of evidence suggested that intracellular lipid metabolism is dramatically perturbed in
various cardiovascular and neurodegenerative diseases with genetic and lifestyle components (e.g., die-
tary factors). Therefore, a lipidomic approach was also developed to suggest possible mechanisms under-
lying Alzheimer’s disease (AD). Neural membranes contain several classes of glycerophospholipids (GPs),
that not only constitute their backbone but also provide the membrane with a suitable environment, flu-
idity, and ion permeability. In this review article, we focused our attention on GP and GP-derived lipid
mediators suggested to be involved in AD pathology. Degradation of GPs by phospholipase A2 can release
two important brain polyunsaturated fatty acids (PUFAs), e.g., arachidonic acid and docosahexaenoic
acid, linked together by a delicate equilibrium. Non-enzymatic and enzymatic oxidation of these PUFAs
produces several lipid mediators, all closely associated with neuronal pathways involved in AD neurobi-
ology, suggesting that an interplay among lipids occurs in brain tissue. In this complex GP meshwork, the
search for a specific modulating enzyme able to shift the metabolic pathway towards a neuroprotective
role as well as a better knowledge about how lipid dietary modulation may act to slow the neurodegen-
erative processes, represent an essential step to delay the onset of AD and its progression. Also, in this
way it may be possible to suggest new preventive or therapeutic options that can beneficially modify
the course of this devastating disease.
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1. Introduction

It has long been known that in several chronic diseases with ge-
netic and lifestyle components (e.g., dietary factors), there is also a
perturbed intracellular lipid metabolism. Therefore, a lipidomic ap-
proach was recently developed to better understand the lipid
molecular profile not only in cardiovascular but also in neurode-
generative diseases [1]. Alzheimer’s disease (AD) is the most com-
mon form of dementia and, at present, there is still no a curative
treatment for this devastating disease [2]. Actually, the lack of
effective treatments is due to complexity of the pathophysiology
of the disease that may have multifactorial components. Growing
evidence supported the influence of lipid changes in the process
of normal cognitive aging and in the etiology of age-related neuro-
degenerative diseases, although it remains open the question if al-
tered brain lipids levels are cause or consequence of aging and/or
AD or if there is a threshold in these changes which may result
in normal or pathological conditions [3].

Dementia is not considered only a neurological disease but a
scary and alarming social problem, especially if we consider the
impressive proportions that it will reach in the next years espe-
cially when one considers the staggering proportions that will
reach in the coming years. In fact, the 2010 estimates suggested
5.3 million of AD cases in the US [4], with >26 million patients with
AD worldwide, and an expected increase to more than 106 million
by 2050 [5]. From a neuropathological view, AD involves aberrant
protein processing and is characterized by the presence of both
intraneuronal protein clusters composed of extracellular aggre-
gates of b-amyloid (Ab) [senile plaques (SPs)], by endoproteolytic
processing of the amyloid precursor protein (APP), and paired heli-
cal filaments of hyperphosphorilated tau protein [neurofibrillary
tangles (NFTs)]. Hyperphosphorylation of tau protein causes neu-
ronal synapse dysfunction and loss of cell-cell communication,
whereas disturbed Ab kinetics may be pivotal for pro-inflamma-
tory pathways that affect cellular integrity [6]. At present, it is dif-
ficult to equivocally delineate if these pathological features of AD
are causative or consequential, and the therapeutic challenge
needs firstly of identifying the way-triggers that compromise cellu-
lar integrity [7]. Ab induces lipid peroxidation and its sequelae
could lead to neuroapoptosis [8], but it is equally true that the al-
tered lipid signaling could exacerbate the pathological features of
disease. However, the hypothesis that Ab is the key pathologic fac-
tor affecting the disease process is strongly challenged by the find-
ing that immunization with pre-aggregated Ab1–42 (AN1792)

resulted in almost complete removal of the SPs from the brain of
the patients but did not prevent progressive cognitive and clinical
decay [9]. These negative finding have been recently echoed by the
failure in two large Phase III clinical trials of semagacestat, a com-
pound that inhibits c -secretase, the pivotal enzyme that generates
Ab, although the drug showed to dramatically reduce the produc-
tion of Ab in the central nervous system (CNS) of humans [10]. In-
deed, Ab may have a physiological role in modulating synaptic
plasticity and hippocampal neurogenesis [11]. Ab deposition may
simply represent a host response to an upstream pathophysiologic
process or serve a protective function likely as an antioxidant/me-
tal chelator [11].

In neurodegenerative process, the large attention devoted to
lipids has ancient origin. In fact, Alois Alzheimer first described
‘‘the extraordinarily strong accumulation of lipoid material in the
ganglion cells, glia and vascular wall cells’’ in the human brain of
demented patient [12]. However, only in recent years thanks to
impressive progress in imaging mass spectrometry (IMS), espe-
cially matrix-assisted laser desorption and ionization (MALDI)–
IMS, it was possible to visualize in tissue sections the distribution
of various lipid bio-molecules [13] and their endogenous metabo-
lites, so creating an increasingly important research area around
the role of cholesterol and other lipid components into pathogen-
esis of cognitive disorders. In fact, the brain is the most choles-
terol-rich organ in the body, containing approximately 25% of
total [14] where it is unesterified and it resides in the myelin
sheaths and in the plasma membranes of astrocytes and neurons.
Furthermore, neural membranes are composed of glycerophospho-
lipids (GPs), sphingolipids, and proteins asymmetrically distrib-
uted between the two leaflets of lipid bilayers. In addition to
structural integrity role to neural membranes, GPs, sphingolipids,
and cholesterol belong to the signal transduction network that
conveys extracellular signals from the cell surface to the nucleus
inducing a biological response at the gene level. This is performed
by second messengers (bioactive lipid mediators) through nuclear
pores (large proteinaceous assemblies) that provide the sole gate-
way for the exchange of material between cytoplasm and nucleus
lipid mediators [15]. Levels of GPs are decreased in brain autopsy
samples from AD patients compared to age-matched controls
[16] accompanied by increased activities of lipolytic enzymes
and elevated concentrations of phospholipid degradation metabo-
lites [17]. This emphasizes the possibility that a specific diet, in
particular the Mediterranean dietary pattern and its nutraceutical
properties, could modify the progression of AD by interfering with
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