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a b s t r a c t

The freezing point is a fundamental thermo-physical property which is important in describing the tran-
sition between the liquid and solid phases. As this property is required for describing phase behavior and
the design of separation unit operations, an efficient, applicable and reliable method which can predict
it is of great importance, especially for compounds where there are no experimental data available. In
this article, an efficient and reliable group contribution (GC) model is developed for the determination
of the freezing point of organic compounds. The sequential search mathematical approach is used in this
study to select an optimal collection of functional groups (112 functional groups) and subsequently to
develop the model. A large dataset of freezing point data for about 17,000 pure mostly organic com-
pounds was used to develop and validate the model. A comparison between the model results and the
database shows a squared correlation coefficient of 0.735 (R2). Moreover, the proposed group contri-
bution model is able to predict the freezing point of organic compounds to within an average absolute
relative deviation of 10.76%, which is of adequate accuracy for many practical applications. Furthermore,
the leverage approach (Williams plot) is used to determine the applicability domain of the model and to
detect probable erroneous data points.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

At the freezing point of a solution, solid solvent is in equilib-
rium with the solvent in solution. As with the melting point, an
increased pressure normally raises the freezing point. The freezing
point is lower than the melting point, in the case of mixtures and
for certain organic compounds such as fats [1]. As a mixture freezes,
the solid that forms first normally has a composition different from
that of the liquid, and formation of the solid changes the composi-
tion of the remaining liquid, normally in a way that steadily lowers
the freezing point. This principle is utilized in purifying mixtures,
successive melting and freezing gradually separating the compo-
nents [1]. Consequently, the fusion heat (heat required to melt a
solid) must be removed from the liquid to freeze it. Some liquids
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can be supercooled (cooled below the freezing point) without solid
crystals forming. The addition of a seed crystal into a supercooled
liquid triggers freezing, whereupon the release of the heat of fusion
raises the temperature rapidly to the freezing point [1].

Freezing point and/or melting point (depending on some consid-
erations in their descriptions) are fundamental physical property
specifying the transition temperature between liquid and solid
phases [2]. Furthermore, they have been used for the prediction of
other physical properties such as aqueous solubility [3–5]. Hence,
accurate prediction of this fundamental thermo-physical property
seems an essential necessity. To date, there have been a few quan-
titative structure-property relationships (QSPR) methods, such as
the property–property relationships (PPR) [6], and group contribu-
tion methods [7–9] applied in attempt to estimate freezing/melting
point. There are some successful estimations of melting points, e.g.
for 24 normal alkanes (R2 = 0.998) using topological indices like the
carbon number, Wiener index, and the Balaban distance sum con-
nectivity index [10]. Nevertheless, some models such as the QSPR
models proposed by Needham et al. [11] indicate poor predictabil-
ity (R2 = 0.570) for their use of 56 normal and branched alkanes. A
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QSPR model [12] for melting point using a dataset containing 443
mono- and di-substituted benzenes which was correlated with a set
of structural parameters, and a nine-parameter model showed a R2

of 0.837. Descriptors related to hydrogen bonding ability, molecular
packing in crystals, and other intermolecular interactions such as
charge transfer and dipole–dipole interactions contributed to the
prediction of melting point.

Burch et al. [13] recently proposed multi parameters models to
estimate melting points of alkanes having 10–20 carbon atoms and
only one methyl group, which are of special interest to petroleum
engineers manufacturing synthetic diesel fuel. A nonlinear regres-
sion model with satisfactory predictability was acquired based on
the Wiener path numbers, the number of carbon atoms, the methyl
locant index, and the mean Wiener index.

A comprehensive review on the previous methods developed for
the prediction of the freezing point of chemical compounds demon-
strates that most of them have been developed for small chemical
groups/families of compounds using small databanks. Hence, in this
study, a very large database is used to develop a general group con-
tribution relationship for the prediction of the freezing point of
organic compounds.

2. Data collection

The key step in developing thorough predictive models is the
selection of an informative, inclusive and representative dataset
[14–16]. The essential criteria for a satisfactory predictive model
are the availability of a set of data of adequate size, diversity and
measured under the same (or similar) conditions with satisfactory
reproducibility and accuracy [2]. Consequently, there are relatively
few previous studies in literature which report the handling of large
datasets to derive a group contribution method. Hence, a dataset of
freezing point values for 16,941 diverse mostly organic compounds
extracted from Yaws’ Handbook of Thermodynamic and Physical
Properties of Chemical Compounds [17] was used in this study.

An analysis of the compounds within the dataset indicates that
the freezing points range between 54.26 and 914.05 K. The com-
pounds are composed of hydrogen (1 to 200 atoms per compound),
carbon (1 to 99 atoms per compound), nitrogen (1 to 8 atoms per
compound), oxygen (from 1 to 18 atoms per compound), phos-
phorus (1 to 4 atoms per compound), sulfur (1 to 8 atoms per
compound), fluorine (1 to 45 atoms per compound), chlorine (1 to
10 atoms per compound), bromine (1 to 10 atoms per compound),
iodine (1 to 5 atoms per compound) and boron (1 to 3 atoms per
compounds). Other elements in the database are aluminum, sili-
con, iron, germanium, arsenic, selenium, cadmium, tin, antimony,
tellurium, mercury, lead and bismuth. The maximum atom num-
bers of these elements are reported as, 3, 1, 8, 1, 1, 2, 4, 1, 2, 2, 2, 1,
1 and 1, respectively.

There are 2460 hydrocarbons in the dataset whose freezing
points range from 85.47 to 710.55 K. The dataset includes 5900
nitrogen compounds whose freezing points range from 90.35 to
636.85 K. An elemental composition analysis of the dataset further
indicates that there are 9777 oxygen compounds whose freezing
points range from 36.45 to 1131.15 K. There are 1339 sulfur com-
pounds in the dataset having freezing points that range from 104.2
to 755.15 K. The dataset includes 268 phosphorous compounds
whose freezing points range from 175.95 to 618.65 K. There are a
significant number of halogen compounds within the dataset: 1066
fluorine-containing compounds with freezing points between 74
and 723.15 K; 2046 chlorine containing compounds with freezing
point between 74 and 604.15 K; 1059 bromine-containing com-
pounds having freezing points that range from 105.15 to 644.66 K;
and 469 iodine-containing compounds whose freezing points range
from 151.15 to 641.18 K.

3. Development of the group-contribution model

For the prediction of pure component properties, group-
contribution models such as those developed by Lyman et al.
[18], Lydersen et al. [19], Joback and Reid [20], Horvath [21],
Ambrose [22], and Klincewicz and Reid [23] have been widely uti-
lized. In these models, the property of a compound is a function
of structurally-dependent parameters, which are determined by
summing the frequency of each group occurring in the molecule
and multiplying by its contribution. These techniques provide the
advantage of quick prediction without requiring substantial com-
putational resources [24]. In proposing an efficient and reliable
group-contribution model for the prediction of freezing point, the
chemical structures of all the compounds were tested thoroughly
to find out the most efficient sub-structures. Hence, having defined
the compounds present in our database, the chemical structures of
all of the studied compounds were analyzed to recognize the chem-
ical substructures. These functional groups are normally selected
from a series involving approximately 500 varying chemical groups
[25].

In the next step, the frequency of appearance of each of the
chemical substructures was counted in each compound. The pair
correlation between each pair of the chemical substructures was
then evaluated to avoid entering irrelevant parameters into the
final model. Next, if the pair correlation of a pair of chemical sub-
structures was more than the threshold value of 0.9, one of them
was removed while the other was kept for the next step. Conduct-
ing these steps, the collection of the chemical substructures was
decreased to nearly 300 chemical substructures.

In order to select the optimal subset of chemical substruc-
tures which affect the freezing point and finally proposing the
final group-contribution model, the sequential search strategy was
implemented [25]. The method is suitable for the subset variable
selection in terms of its capability of handling the large number
of data, as well as for an acceptable computational run-time. As
a matter of fact, the major target of a sequential search is to find
an optimal subset of chemical substructures for a specified model
size [26]. The basic idea of the method is to replace each chemical
substructure, one at a time, with all the remaining ones and see
whether a better model is obtained.

Normally in the group contribution modeling, the selected lit-
erature dataset is divided into three subsets which are the training,
validation and test sets. The “Training” set is applied to generate
the model structure, while the “Validation” set as well as the “Test”
set are employed to investigate its prediction validity and capabil-
ity. In other words, the first set is for developing the model, the
second set is for evaluation of the internal validity of the group-
contribution model, and the final set is for assessing the predictive
capability. In splitting the dataset into sub-data sets, several dis-
tributions have been used to avoid local minima and accumulation
of the data in the feasible region of the problem. Consequently, an
adequate distribution is the one with homogeneous accumulations
of the data in the domain of the three sub-data sets [27]. In this
study, the K-means clustering technique is implemented to parti-
tion the main dataset into the training, the validation, and the test
sets. The K-means clustering method is a means of cluster analy-
sis which aims to split n observations into k clusters in which each
observation belongs to the cluster with the nearest mean. In other
words, it would be of great interest if we could divide the main
dataset so that all the subsets are uniform and have almost the
same ranges and means. This procedure resolves the issue of inap-
propriate allocation of datasets. Another point is the quota of each
sub-dataset from the main dataset. As a consequence, we assigned
80% (13,533 points), 10% (1694 points), and 10% (1694 points) of
the main databank to each of the training, the validation, and the
test sets, respectively.
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