Contents lists available at ScienceDirect

Prostaglandins and Other Lipid Mediators

Central prostaglandin D₂ exhibits anxiolytic-like activity via the DP₁ receptor in mice

Hui Zhao^{a,c,1}, Kousaku Ohinata^{a,c,*,1}, Masaaki Yoshikawa^{a,b,c}

^a Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan

^b Fronteir Research Center, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

^c CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan

ARTICLE INFO

Article history: Received 3 September 2008 Accepted 10 October 2008 Available online 21 October 2008

Keywords: PGD₂ Anxiolytic-like activity DP₁ receptor Adenosine A_{2A} receptor γ-Aminobutyric acid GABA_A receptor

1. Introduction

Prostaglandin (PG) D₂, the most abundant PG in the mammalian central nervous system (CNS) [1], possesses a number of functions, such as sleep induction, hypothermia and attenuation of the pain response [2–7]. Recently we have found that central PGD₂ stimulates food intake in mice [8]. PGD₂ is produced from arachidonic acid, via PGH₂, by lipocalin-type PGD synthase (L-PGDS), which is localized in the arachnoid membrane and choroid plexus of the brain [9,24]. There are two receptor subtypes for PGD₂, DP₁ receptor [10,11] and DP₂ receptor [12–14], which was originally termed a chemoattractant receptor-homologous molecule expressed on TH2 (CRTH2). Both subtypes are G-protein coupled receptors present in the CNS. We have reported that orexigenic activity of PGD₂ is mediated by the DP₁ receptor [8].

Recently we also have found that a bioactive tripeptide rubimetide (Met-Arg-Trp), which was isolated from a pepsin–pancreatin digest of spinach ribulose bisphosphate carboxylase/oxygenase (Rubisco), exhibited anxiolytic-like activity by activating a PGD₂ system in mice [15]. We then investigated whether centrally administered PGD₂ alone shows anxiolytic-like activity using the elevated

¹ These authors contributed equally to this work.

ABSTRACT

We found that prostaglandin (PG) D_2 , the most abundant PG produced in the central nervous system (CNS), exhibited anxiolytic-like activity at a dose of 10–100 pmol/mouse after intracerebroventricular (i.c.v.) administration in the elevated plus-maze test in mice. A DP₁ receptor-selective agonist, BW245C, mimicked the anxiolytic-like activity of PGD₂, while a DP₂ receptor agonist 13,14-dihydro-15-keto-PGD₂ was inactive. The anxiolytic-like activity of PGD₂ was blocked by a DP₁ antagonist, BWA868C, suggesting that PGD₂-induced anxiolytic-like activity was mediated by the DP₁ receptor. Adenosine A_{2A} or GABA_A receptor antagonists, SCH58261 or bicuculline, respectively, also blocked its anxiolytic-like activity. Taken together, centrally administered PGD₂ may induce anxiolytic-like activity via the A_{2A} and GABA_A receptors, downstream of the DP₁ receptor.

© 2008 Elsevier Inc. All rights reserved.

plus-maze test in mice. We also investigated which of two receptor subtypes for PGD₂ mediates the anxiolytic-like activity of PGD₂, and the mechanism underlying its activity downstream of the receptor for PGD₂.

2. Materials and methods

2.1. Animals

Four-week-old male ddY mice were obtained from SLC (Shizuoka, Japan) [15–19]. All animals were housed in a temperature-controlled room $(23 \,^{\circ}\text{C})$ on a 12 h light–dark cycle with lights on at 07:00. All animals had free access to food pellets and water. All experiments were approved by the Kyoto University Ethics Committee for Animal Research Use. All animals were euth-anized by an overdose of anesthesia drugs after the experiment.

2.2. Reagents

PGD₂ was obtained from Nacalai Tesque, Inc. (Kyoto, Japan). BWA868C, a DP₁ receptor antagonist; BW245C, a DP₁ receptor agonist and 13,14-dihydro-15-keto-PGD₂ (DKPGD₂), a DP₂ receptor agonist, were purchased from Cayman Chemical Company (Ann Arbor, MI). Bicuculline, a γ -aminobutyric acid type A (GABA_A) antagonist, and SCH58261, an adenosine A_{2A} receptor antagonist, were obtained from Tocris Bioscience (Bristol, UK).

^{*} Corresponding author. Tel.: +81 774 38 3733; fax: +81 774 38 3774. E-mail address: ohinata@kais.kyoto-u.ac.jp (K. Ohinata).

^{1098-8823/\$ -} see front matter © 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.prostaglandins.2008.10.001

(A) time (%)

10

Ω

20

visit (%)

time in open arms

% of t

(B)

2.3. Elevated plus-maze test

The elevated plus-maze test was performed as described previously [15-19]. Four arms (24 cm long \times 5 cm wide) were placed 50 cm above the ground. Two opposite arms were delimited by acrylic vertical walls (13 cm high, closed arms), whereas the other two, opposite arms had unprotected edges (open arms). A mouse was placed in the center of the maze facing an open arm and observed for 5 min to measure the cumulative time and frequency of entries into the open and closed arms. Arm entry was defined as the entry of four paws into an arm. Open-arm entry time (time spent in open arms) was expressed as a percentage of the total entry time (% of time), and the number of open-arm entries was expressed as a percentage of the number of total entries (% of visit). In this system, diazepam (1 mg/kg, i.p.) exhibited significant anxiolytic-like activity. Intracerebroventricular (i.c.v.) administration was performed as described previously [20–22]. Briefly, a 28-gauge stainless steel needle attached to a 0.05-ml Hamilton syringe was inserted perpendicularly through the skull into the brain. The site of injection was 2 mm from either side of the midline on a line drawn through the anterior base of the ears. PGD₂, a DP₁ agonist BW245C or DP₂ agonist DKPGD₂ was dissolved in dimethylsulfoxide (DMSO) and the solution was diluted 20 times with artificial cerebrospinal fluid (ACSF; 138.9 mM NaCl, 3.4 mM KCl, 1.3 mM CaCl₂, 4.0 mM NaHCO₃, 0.6 mM NaH₂PO₄, 5.6 mM glucose, pH 7.4). Each drug in 4 µl 5% DMSO ACSF was i.c.v. administered 20 min before the test. An antagonist for the DP1 receptor was i.c.v. co-administered with PGD2 20 min before the test. The total number of visits to the closed and open arms, and the cumulative time spent in the open and closed arms were measured on a monitor through a video camera system. Data were checked by observers who were unaware of the experimental groups.

2.4. Statistical analysis

All values are expressed as the means \pm S.E.M. Analysis of variance (ANOVA) followed by Fisher's test was used to assess differences among groups. P-values less than 0.05 were considered significant.

3. Results

3.1. PGD₂ exhibits anxiolytic-like activity in the elevated plus-maze test

We investigated whether PGD₂ exhibits anxiolytic-like activity after central administration in the elevated plus-maze test in mice. I.c.v. administered PGD₂ at a dose of 10-100 pmol/mouse significantly increased the percentages of the time and visits to the open arms for 5 min in a dose-dependent manner (Fig. 1A and B). PGD₂ did not change the total visits to open and closed arms (Fig. 1C), suggesting that PGD₂ had no effect on locomotor activity. Thus, we found that centrally administered PGD₂ has anxiolytic-like activity in mice.

3.2. PGD₂-induced anxiolytic-like activity is mediated through the DP₁ receptor

To elucidate which of two receptor subtypes for PGD₂ was involved in anxiolytic-like activity of PGD₂, we used selective agonists for DP₁ and DP₂ receptors, BW245C and DKPGD₂, respectively. I.c.v. administered BW245C (0.1-1 pmol/mouse) showed a significant increase in % of time spent in the open arms (Fig. 2A). In contrast, DKPGD₂ (1-10 pmol/mouse) was inactive (Fig. 2B). Both agonists had no effect on total motor activity (data not shown).

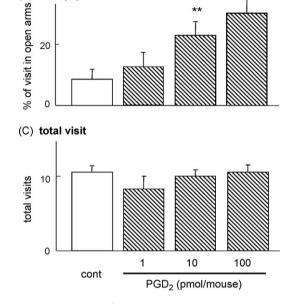


Fig. 1. Anxiolytic-like activity of PGD₂ in the elevated plus-maze test in mice. PGD₂ at a dose of 1-100 pmol/mouse was i.c.v. administered 20 min before the tests. Each value is expressed as the mean \pm S.E.M. (n = 5-6). *P < 0.05, **P < 0.01, and ***P < 0.001compared with the ACSF-treated control group.

Thus, a DP₁ but not DP₂ receptor agonist exhibited anxiolytic-like activity after central administration. These results suggest that the DP₁ receptor is associated with anxiolytic-like activity of PGD₂.

In order to demonstrate the involvement of the DP₁ receptor in PGD₂-induced anxiolytic-like activity, a DP₁ receptor antagonist, BWA868C was used. PGD₂ (100 pmol/mouse, i.c.v.)-induced increases in % of time and visits to open arms were completely blocked by co-administration with BWA868C (1.6 nmol/mouse, i.c.v.), as shown in Fig. 3A and B. BWA868C alone did not have any effect on anxiety-related behavior (Fig. 3). Thus we demonstrated that the anxiolytic-like activity of PGD₂ after central administration is evidently mediated by the DP₁ receptor.

3.3. Anxiolytic-like activity of PGD_2 is mediated through the *GABA_A* receptor downstream of the DP₁ receptor

We also tested whether anxiolytic-like activity of PGD₂ was involved in activation of the GABAA receptor, which is a wellknown anxiolytic pathway in the CNS [23], downstream of the DP₁ receptor. I.p. pretreatment of bicuculline, a GABAA receptor antagonist (5 mg/kg) significantly blocked increases in % of time spent in open arms after i.c.v. administration of PGD₂ (100 pmol/mouse), as shown in Fig. 4A. Bicuculline itself did not have any effect on anxiety-related behavior (Fig. 4A). These results suggest that activation of the GABA_A receptor involves anxiolytic-like behavior induced by PGD₂, downstream of the DP₁ receptor.

Download English Version:

https://daneshyari.com/en/article/2019956

Download Persian Version:

https://daneshyari.com/article/2019956

Daneshyari.com