

Prostaglandins & other Lipid Mediators 83 (2007) 237-249

Low expression of cell-surface thromboxane A_2 receptor β -isoform through the negative regulation of its membrane traffic by proteasomes

Masako Sasaki^{a,b}, Jun Sukegawa^c, Katsutoshi Miyosawa^a, Teruyuki Yanagisawa^c, Satoko Ohkubo^a, Norimichi Nakahata^{a,b,*}

 ^a Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan
^b Tohoku University 21st Century COE Program "CRESCENDO", Sendai, Japan
^c Department of Molecular Pharmacology, Graduate School of Medicine, Tohoku University, Seiryo-cho 2-1, Aoba-ku, Sendai 980-8575, Japan

Received 11 November 2006; received in revised form 11 December 2006; accepted 19 December 2006 Available online 27 December 2006

Abstract

Human thromboxane A_2 receptor (TP) consists of two alternatively spliced isoforms, TP α and TP β , which differ in their cytoplasmic tails. To examine the functional difference between TP α and TP β , we searched proteins bound to C termini of TP isoforms by a yeast two-hybrid system, and found that proteasome subunit α 7 and proteasome activator PA28 γ interacted potently with the C terminus of TP β . The binding of TP β with α 7 and PA28 γ was confirmed by co-immunoprecipitation and pull-down assays. MG-132 and lactacystin, proteasome inhibitors, increased cell-surface expression of TP β , but not TP α . Scatchard analysis of [³H]SQ29548 binding revealed that the B_{max} was higher in transiently TP α -expressing cells than TP α -expressing cells. In addition, TP-mediated phosphoinositide hydrolysis was clearly observed in TP α -, but not TP β -expressing cells. These results suggest that TP β binds to α 7 and PA28 γ , and the cell-surface expression of TP β is lower than that of TP α through the negative regulation of its membrane traffic by proteasomes.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Thromboxane A2 receptor; Proteasome; PA28γ; α7; Subcellular localization; Yeast two-hybrid screening; TPα; TPβ

1. Introduction

Thromboxane A₂ (TXA₂) plays an important role in constriction of vascular and bronchiolar smooth muscle cells, mitogenesis of vascular smooth muscle cells, and platelet aggregation through stimulation of TXA₂ receptor (TP)

1098-8823/\$ - see front matter © 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.prostaglandins.2006.12.001

Abbreviations: CFTR, cystic fibrosis transmembrane conductance regulator; ER, endoplasmic reticulum; ERAD, ER-associated degradation; GPCR, G protein-coupled receptor; GST, glutathione S-transferase; HRP, horseradish peroxide; PVDF, polyvinylidene difluoride; TCA, trichloroacetic acid; TP, thromboxane A₂ receptor; TXA₂, thromboxane A₂

^{*} Corresponding author at: Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan. Tel.: +81 22 795 6809; fax: +81 22 795 3847.

E-mail address: nakahata@mail.pharm.tohoku.ac.jp (N. Nakahata).

[1]. TP is a member of the G protein-coupled receptor (GPCR) family and is known to be coupled with $G_{q/11}$ [2–4]. Furthermore, TP has been reported to communicate with other G proteins, such as G_{12} , G_{13} , G_i and G_h [5–7], thus evoking the activation of multiple signaling pathways. However, the switching mechanism of TP in communication with these different G proteins remains to be elucidated. Human TP has been found as a single gene that has two alternatively spliced isoforms, TP α and TP β . TP α cDNA encoding a protein of 343 amino acids was cloned from human placental cells [8], and TP β cDNA encoding 407 amino acids was cloned from human endothelial cells [9]. While TP α and TP β share the first 328 amino acids, these isoforms are different in their C termini. The predicted ligand-binding domains are the same for both receptor isoforms [10]. In fact, it has been reported that there is no difference in the affinity for ligands between the two isoforms [4,11,12].

There are many human cells and tissues which express both TP α and TP β [13], although TP α was originally found in placental cells [8] and TPB in endothelial cells [9]. It is generally believed that the third intracellular loop and C-terminal domain of GPCR are important for coupling with heterotrimeric G protein, and for receptor desensitization through phosphorylation. Thus, the difference in the C-terminal domain of the two TP variants is likely to show a difference in G protein coupling or receptor desensitization. For instance, rat PACAP receptor splice variants with insertions at the third intracellular loop show altered patterns of adenylyl cyclase and phospholipase C stimulation, through changes in coupling with G proteins [14]. Alternative splicing isoforms of prostanoid EP3 receptor, which differ only at their C-terminal tails, couple to different G proteins to activate different second messenger systems [15]. In the case of TP, Hirata et al. [4] have demonstrated that TP agonists cause elevation of cAMP in CHO cells expressing TP α but not TP β , while they cause phosphoinositide hydrolysis to a similar extent in cells expressing TP α and TP β . However, the molecular mechanism in coupling of alternative splicing variants of TP to the different G proteins remains to be established. On the other hand, it has been shown that stimulation of TP causes a homologous desensitization in 1321N1 human astrocytoma cells [16]. Habib et al. [17] have demonstrated that U46619, a TP agonist, induces phosphorylation and homologous desensitization of both TP isoforms to a similar extent, using isoform-specific antibodies. In contrast, there are several reports showing that TP α and TP β are desensitized differently. For example, the number of TXA₂binding sites is decreased in fibroblasts expressing $TP\alpha$, by prolonged stimulation with a TP agonist, but those in cells expressing TP β are markedly increased [12]. In addition, it has been shown that TP β , but not TP α , undergoes both agonist-dependent and agonist-independent internalization [18,19]. These observations clearly indicate that there is a difference in the function and/or regulatory mechanisms of TP α and TP β .

In the present study, we searched the proteins associated with the C terminus of TP α and/or TP β in a yeast two-hybrid screening, and found that the C terminus of TP β could directly bind to proteasome subunit α 7 and proteasome activator PA28 γ . In addition, we found that the cell surface expression of TP β was negatively regulated through membrane traffic by proteasomes.

2. Materials and methods

2.1. Cell culture and transfection

CHO cells and HEK293 cells were grown in Dulbecco's modified Eagle's medium containing 10% fetal calf serum in a humidified incubator with a 5% CO₂ atmosphere at 37 °C. Transfection was performed with Polyfect Transfection Reagent or Lipofectamine 2000, according to the manufacturer's recommendation.

2.2. Plasmid construction

WT-TPα/pcDNA3.1+ was generated by inserting the TPα fragment from HPL/pBluescript, kindly provided by Dr. S. Narumiya (Kyoto University, Japan), digested with *Bam*HI and *Hinc*II into pcDNA3.1+ digested with *Bam*HI and *Eco*RV. WT-TPβ/pcDNA3.1+ was obtained by inserting TPβC-tail cDNA obtained from RT-PCR of 1321N1 human astrocytoma cell lines. Primers 5'-AAAGTCGACAAGAGCCGTGCTCAGGCGTCTCCAGCC-3' (TP1) and 5'-TTGCGGCCGCTCAATCCTTTCTGGACAGAGCCTTCCC-3' were used for generation of TPβC-tail, including *Sal*I and *Not*I sites. Amplified TPβC-tail fragment was digested with *Bsi*HKAI and *Not*I, and inserted, together with a fragment from HPL/pBluescript digested with *Eco*RI and *Bsi*HKAI, into pcDNA3.1+ digested with *Eco*RI and *Not*I.

For construction of FLAG-tagged receptors, WT-TP α /pcDNA3.1+ and WT-TP β /pcDNA3.1+ were digested with *ApaI* and *XbaI*. The DNA fragment of TP and annealed oligonucleotides (5'-AGCTTTGGCCCAACGGC-

Download English Version:

https://daneshyari.com/en/article/2020068

Download Persian Version:

https://daneshyari.com/article/2020068

Daneshyari.com