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a  b  s  t  r  a  c  t

Phase  stability  calculations  consume  a significant  part  of  a process  or a compositional  reservoir  simula-
tion CPU  time  as  millions  of  two-  or multi-phase  equilibrium  calculations  on  complex  multicomponent
mixtures  need  to be  performed.  The  iterative  nature  of  the  solving  methods  involved  in  conjunction  to the
risk of  false  convergence  render  these  computations  as a  hot  research  area.  A  new  method  is presented
for  generating  discriminating  functions  of pressure,  temperature  and  compositions  which  separate  stable
from unstable  mixtures.  These  functions  provide  the  same  stability  state  predictions  as the  established
minimum  tangent  plane  distance  since  they  exhibit  exactly  the  same  sign  and  zeroing  points.  Their  sim-
ple explicit  expressions  allow  for the  rapid,  non-iterative  and  robust  evaluation  of  the  stability  state  of
the fluid  under  study.  Being  generated  by  using  the  fluid’s  Equation  of  State  model  they  offer  predictions
which  can  be  as  accurate  as the  thermodynamic  model  itself. A set  of examples  demonstrates  the  accu-
racy of the  proposed  method  as well  as  its very  significant  advantages  with  respect  to  computational
speed.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Phase equilibrium calculations have been attracting significant
research interest particularly over the last decades due to the broad
range of applications in which they are involved such as separation
processes, pipeline flow, and compositional reservoir simulation.
Prior of performing a phase behavior calculation, for a given feed
composition and thermodynamic conditions, one needs to know
the number and type of the coexisting equilibrium phases. There-
fore, a phase stability test should be conducted first to be followed,
whenever required, by a phase split calculation to provide the molar
fraction and composition of each co-existing phase. The quality
of the results bear direct impact on the accuracy of the simula-
tion as they provide PVT and physical properties data input to the
flow, mass and energy equations. Depending on the discretization
of space and time, millions of such phase equilibrium calculations
may  need to be performed during a single run consuming a signif-
icant fraction of the total simulation CPU time [1].  As a result, both
accuracy and computational speed are major factors affecting the
performance of a simulation model.

Since the introduction of the minimum tangent plane dis-
tance criterion (TPD) by Michelsen [2],  a large number of studies
have been presented that address the phase stability issue as a
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problem of identifying the coexisting phases which minimize the
TPD. The energy of the system is usually estimated by an Equation
of State (EoS) model which introduces high non-linearities to the
equations involved and multiple local minima to the energy sur-
face, thus giving rise to two  major challenges. The first one being
accuracy and reliability while the second one is the speed of per-
forming the calculations. Reliable methods focus at finding system’s
energy global minimum using a wide variety of approaches such
as homotopy-continuation [3],  Newton-interval optimization [4],
dividing rectangles [5],  tunneling [6],  simulated annealing [7],  and
area methods [8].  Admittedly, all the above methods pay little or
no attention to the speed of performing computations.

On the other hand, faster methods have been proposed for
rapidly finding, in an iterative mode, a local minimum of the energy
surface. Such methods depend on the quality of the initial esti-
mations to ensure that the detected minimum happens to be the
global one. The standard approach for speeding up computations
is to lump the individual fluid components in a smaller number
of pseudo-components [9] while preserving as much as possible
the main characteristics of the energy surface. Reduction methods
were initiated by Michelsen [10] who was the first one to link the
number of non-linear equations that need to be solved in phase-
split calculations to the rank of the binary interaction coefficients
matrix (BIC) by showing that in the extreme case of zero BIC, the
system equations are only three, on the condition that the Van der
Waals mixing rules are utilized. Hendricks and Van Bergen [11]
and Firoozabadi and Pan [12] extended this idea to phase stability
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calculations for fluids with non-zero BIC. By applying singular value
decomposition to the BIC matrix and by maintaining only its dom-
inant directions, the n original variables are replaced by a set of
m new ones with m � n thus significantly reducing the problem’s
dimensionality.

An alternative approach proposed by Rasmusen et al. [13] pro-
vides criteria for completely bypassing the stability test during
a simulation run when the equilibrium conditions fall in certain
regions of the phase diagram. They also proposed that any non-
trivial values of the equilibrium coefficients obtained from the
stability test which was performed at the precedent time step can
be used as initial estimates to the subsequent one thus avoiding the
utilization of the inaccurate Wilson’s k-values. Nevertheless, spe-
cial treatment is still required when the prevailing conditions at a
discretization block meet either the phase envelope or the conver-
gence pressure locus. Wang and Stenby [14] developed a phase split
algorithm based on the linearization of the mass continuity and
phase equilibrium equations which provides the number of moles
of each component in each phase as the solution of a system of
linear equations of order n2. Stability is then determined by exam-
ining the sign of each phase’s number of moles. Voskov and Tchelepi
[15] proposed a parameterization of the compositional space which
takes advantage of the linearity of the phase compositions along the
tie-lines. By interpolating between preprocessed phase diagrams at
several pressures and temperatures, phase compositions and mole
fractions can be obtained also allowing for the solution of the stabil-
ity problem. This approach has been extended to provide solutions
at the supercritical region where tie-lines cannot be defined [16].
Schmitz et al. [17] proposed the use of neural networks for the treat-
ment of ternary systems exhibiting a heterogeneous azeotrope. In
their approach, each possible stability state is assigned to an integer
that is non-iteratively predicted by the pretrained network. Evi-
dently, stability calculations speed-up methods are required when
repeated stability tests are performed for potential phases that can
be described by a fixed EoS model, as it is the case with compo-
sitional full scale reservoir models, pipeline flow and separation
process simulations.

In this work, a new approach for treating the phase stability
problem in process simulation is proposed. A positive non-linear
transformation of the established tangent plane distance exhibit-
ing the same sign and the same zeroing points as the latter is
used to provide a binary stable/unstable answer to the stability
question. This appropriately designed discriminating function is an
explicit function of composition, pressure and temperature, well
defined anywhere in the operating space even outside the stabil-
ity test limit locus [18]. Once generated, its explicit form allows
stability state predictions to be obtained in a direct, non-iterative
mode and with a computational effort which corresponds to a very
small fraction of the CPU time required by conventional meth-
ods. By completely avoiding time consuming iterations and the
requirement for suitable initial estimations, the number of oper-
ations required for any test point is constant even in the vicinity of
the critical point, the stability test limit locus and the supercritical
region.

The discriminating function can be generated quickly by a fully
automated procedure using phase behavior data that is obtained
by any reliable phase stability algorithm. Being generated against
noise-free data, the proposed discriminating function provides the
stability state as accurately as the EoS model utilized for its devel-
opment. It is shown that the discriminating function can serve as
a measure of any test point distance to the phase boundary thus
allowing, whenever necessary, the utilization of conventional algo-
rithms for the few ambiguous cases lying in the vicinity of the phase
boundary. The method can be applied with any EoS model and with
any set of mixing rules and it can be directly extended to stability
calculations with an arbitrary number of phases.

This paper is organized as follows. Firstly, the equivalence
between discriminating functions and the tangent plane distance
is documented. Subsequently, the mathematical techniques uti-
lized for generating and implementing the proposed discriminating
function are presented. A set of representative examples demon-
strates the value of the proposed method and a discussion on
further enhancements precedes the conclusions.

2. Discriminating functions equivalence to the phase
stability problem

According to the tangent plane distance criterion a mixture of
given composition z at pressure p and temperature T will split into
two or more phases if a composition y can be found which leads
to a reduction of the mixture’s Gibbs energy when an infinitesimal
quantity of that composition forms a second phase. Let the reduced
Gibbs energies of the original mixture and of the potential diphasic
one be g(z) and gmix(z, y) respectively. Michelsen’s criterion states
that:

Mixture is

⎧⎪⎨
⎪⎩

unstable if TPDmin < 0
stable if TPDmin > 0
stable if TPDmin = 0, ymin = z
unstable if TPDmin = 0, ymin /= z

(1a)

where

TPDmin = �gmin = gmix(z, ymin) − g(z) (1b)

ymin = arg min
y

{gmix(z, y)} (1c)

The four branches in Eq. (1a) correspond to points lying in the
interior of the pressure–temperature phase envelope, between the
phase envelope and the stability test limit locus [18], outside the
stability test limit locus and on the phase envelope (incipient equi-
librium second phase) respectively. Due to the implicitness and
non-linearity of Eq. (1c), the phase stability problem needs to be
solved iteratively either by an optimization method or by utiliz-
ing function solving methods such as the Newton–Raphson or the
Successive substitution ones for locating stationary points where
the TPD derivative vanishes. An expression allowing for the direct
evaluation of the minimum TPD and ymin values would be highly
beneficial as it would relax the need for iterative computations.
In fact, according to Eq. (1),  any function d(z, p, T) exhibiting the
same sign with TPDmin over the full operating range would provide
exactly the same stability predictions as the conventional criterion.
More specifically, the conditions that function d(·) should satisfy are
given by:

TPDmin(z, p, T) /= 0 ⇒ TPDmin(z, p, T) · d(z, p, T) > 0
TPDmin(z, p, T) = 0, ymin = z ⇒ d(z, p, T) > 0
TPDmin(z, p, T) = 0, ymin /= z ⇒ d(z, p, T) = 0

(2)

Note that during a simulation run, the EoS model parameters
are fixed to the values obtained from the tuning and, with their
variance being equal to zero, they can be omitted from the functions
arguments. By comparing Eqs. (1a) and (2) it can be readily seen that
once a d(z, p, T) function has been derived satisfying the conditions
above, the stability test rule can be described equivalently by:

Mixture is

{
stable if d(z, p, T) > 0
unstable if d(z, p, T) < 0
unstable if d(z, p, T) = 0

(3)

where the third branch corresponds to an incipient equilibrium
second phase. The “min” subscript from here and on will be omitted
for the sake of simplicity.

In this work, the utilization of discriminating functions from the
machine learning field [19] is proposed as suitable tools for gen-
erating explicit expressions of the d(·) function. Let a set of data
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