[Protein Expression and Purification 99 \(2014\) 70–77](http://dx.doi.org/10.1016/j.pep.2014.04.003)

Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/10465928)

Protein Expression and Purification

journal homepage: www.elsevier.com/locate/yprep

Purification and characterisation of recombinant human eukaryotic elongation factor 1 gamma

Ikechukwu Achilonu^{*}, Thendo P. Siganunu, Heini W. Dirr

Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa

article info

Article history: Received 14 March 2014 and in revised form 2 April 2014 Available online 13 April 2014

Keywords: Human eukaryotic elongation factor 1 gamma GST-like N-terminus domain GSH-CDNB conjugation assay Quaternary structure ANS binding

ABSTRACT

The eukaryotic elongation factor 1 gamma (eEF1 γ) is a multi-domain protein, which consist of a glutathione transferase (GST)-like N-terminus domain. In association with α , β and δ subunits, eEF1 γ forms part of the eukaryotic elongation factor complex, which is mainly involved in protein biosynthesis. The N-terminus GST domain of eEF1 γ interacts with the β subunit. eEF1 γ subunit is over-expressed in human carcinoma. The role of human eEF1 γ (heEF1 γ) is poorly understood. A successful purification of recombinant heEF1 γ is the first step towards determining unknown properties of the protein, including putative GSTlike activities and the structure of the protein. This paper describes the over-expression, purification and characterisation of recombinant full-length, and the N- and C-terminus domains of heEF1 γ . All three recombinant heEF1 γ constructs over-expressed in the soluble *Escherichia coli* cell fraction and were purified to homogeneity. Secondary structure analysis indicates that the heEF1 γ constructs have high α -helical structural character. The full-length and N-terminus domain are dimeric, while the C-terminus is monomeric. Both full-length and N-terminus domain interact with 8-anilino-1-naphthalene sulfonate (ANS) with K_D = 70.0 (±5.7) µM and with reduced glutathione (GSH). Glutathione sulfonate displaced ANS bound to hydrophobic binding sites in the recombinant N-terminus domain. Using the standard GSH-1-chloro-2,4-dinitrobenzene conjugation assay, the N-domain showed some enzyme activity (0.03 μ mol min⁻¹ mg⁻¹ protein), while the full-length heEF1 γ did not catalyse the GSH-CDNB conjugation. Consequently, we hypothesize the presence of a presumed GST-like active site structure in the heEF1 γ , which comprises a glutathione binding site and a hydrophobic substrate binding site.

- 2014 Elsevier Inc. All rights reserved.

Introduction

Protein biosynthesis in eukaryotes involves three distinct steps, namely initiation, elongation and termination. The elongation step is catalysed by eukaryotic elongation factor 1 (eEF1 γ) macromolecular complex, which consists of eEF1 α , eEF1 β , eEF1 γ and eEF1 δ subunits (renamed eEF1A, eEF1B α , eEF1B γ and eEF1B δ) [\[1–3\]](#page--1-0). For simplicity sake, we will use the older terminologies in this publication. This energy-driven process catalyses the transfer of aminoacyl-tRNAs to ribosome, mediated by the hydrolysis of GTP [\[2\].](#page--1-0) During the elongation step, GDP-eEF1 α complex is converted to GTP-eEF1 α complex by eEF1 $\beta\gamma\delta$ complex-mediated GTP hydrolysis [\[2,4\]](#page--1-0). Studies have suggested that the main nucleotide exchange factor is the eEF1 β , therefore the roles played by γ and δ subunits are not clearly understood $[2,4-6]$. Nevertheless, the four subunits have been shown to be highly expressed in most eukaryotic cells [\[1,7\]](#page--1-0).

Studies have shown that eEF1 γ is necessary for the nucleotide exchange between α and β subunits, but not directly involved in this process. This is because the absence of eEF1 γ from the complex in protein synthesis does not affect the rate of translation [\[8\]](#page--1-0). Immunofluorescence studies have shown that eEF1 γ forms part of the elongation factor complex with β and δ subunits in the endoplasmic reticulum of human fibroblast [\[9\].](#page--1-0) Studies have also shown that eEF1 γ is remarkably over-expressed in tumour cells, when compared to the other three subunits $[1,7]$. In Saccharomyces cerevisiae, the depletion of eEF1 γ results in resistance to oxidative stress $[10]$. This may be as a result of the presence of a GST-like domain on the N-terminus (NT) of heEF1 γ^1 [\(Fig. 1\)](#page-1-0) [\[3,11\]](#page--1-0), which is also believed to be involved in the interaction of the β -subunit of the elongation factor complex [\[3\].](#page--1-0) GSTs are a very

[⇑] Corresponding author. Tel.: +27 11 717 6349; fax: +27 11 717 6351. E-mail address: Ikechukwu.Achilonu@wits.ac.za (I. Achilonu).

¹ Abbreviations used: heEF1 γ , human eukaryotic elongation factor 1 gamma; FL, full length; NT, amino terminus; CT, carboxylic terminus; CD, circular dichroism; H-site, hydrophobic binding site; G-site, glutathione binding site; GST, glutathione transferase; GSH, reduced glutathione; GSO₃⁻, glutathione sulfonate; ANS, 8-anilino-1napthalene sulfonate; CDNB, 1-chloro-2,4-dinitrobenzene; IMAC, immobilized metal ion affinity chromatography; FRET, Förster resonance energy transfer.

Fig. 1. A schematic illustration of the domain structure of heEF1 γ as predicted by the ScanProsite server [\[19\].](#page--1-0) The numbers represent the amino acid corresponding to each domain structure.

important family of enzymes, involved in the detoxification of oxy-gen radical [\[12\]](#page--1-0). Therefore it is suggested that the presence of eEF1 γ in many tumour cells alters the redox balance in these cells, thus enhancing the aggressiveness of the tumour $[2,7]$. The heEF1 γ have been shown to interact with cytoskeleton [\[2,13\]](#page--1-0), membrane-bound receptors such as dopamine D_3 receptor [\[14\],](#page--1-0) RNA polymerase II [\[5\]](#page--1-0) and tubulin [\[13,15\].](#page--1-0)

Sheu and Traugh $[8]$ showed that recombinant rabbit eEF1 γ associates as a trimer of \sim 140 kDa. But works of Jeppesen et al. [\[16\]](#page--1-0) show that the crystal structure indicates that the yeast NT GST-like domain of eEF1 γ is monomeric, but that an extended form of the NT GST-like domain of yeast eEF1 γ displays dimeric structure. Moreover the yeast NT eEF1 γ does not exhibit a typical GST activity using GSH-CDNB conjugation assay. Vanwetswinkel and colleagues showed that recombinant full length heEF1 γ subjected to limited proteolysis yielded a 25 kDa NT-domain and a highly protease-resistant CT-domain, and the CT-domain did not reveal any similarity with any existing protein family [\[17,18\]](#page--1-0).

The critical role played by eEF1 γ in protein biosynthesis and other suggested biological functions of the protein necessitates in-depth biochemical and structural studies on the heEF1 γ , including its sub-domain structures. In this study, the ORF sequence of the heEF1 γ was extracted from GenBank and recoded to enhance the over-expression of the protein in Escherichia coli host cell. The full length human eEF1 γ (FL-heEF1 γ), GST-like NT domain (NT-heEF1 γ) and the C-terminus (CT) domain (CT-heEF1 γ) were recombinantly over-expressed in E. coli. The tertiary and quaternary structure of purified full length and sub-domains of heEF1 γ were analysed. The ligandin functions of heEF1 γ , as well as enzyme activity towards conjugation of GSH to CDNB were also studied.

Materials and methods

Plasmid construction

The cDNA encoding heEF1 γ (Gene ID NP_001395.1) was extracted from GenBank. The corresponding amino acid sequence was submitted to the ScanProsite server [\[19\]](#page--1-0) for theoretical identification of protein domains on the heEF1 γ polypeptide. The native mRNA sequence was re-coded (codon harmonization) [\[20,21\]](#page--1-0) to match the natural codon usage frequency to what it will look like in E. coli $[20]$. The codon-harmonized gene was synthesized (by GenScript Inc, Piscataway, NJ) to incorporate a short E. coli thioredoxin peptide sequence, a $6 \times$ His-tag and a thrombin cleavage site upstream the heEF1 γ ORF sequence (Fig. S1). The synthesized gene was cloned into a pET-11a plasmid using incorporated NdeI and BamHI to create pTFL-heEF1 γ for expression in E. coli BL21Codon Plus strain (Stratagene). Using pTFL-heEF1 γ as a template, sitedirected mutagenesis was used to create a stop codon between the NT-heEF1 γ and CT-heEF1 γ domains (Fig. S1) to enable the over-expression of NT-heEF1 γ in E. coli. The nucleotide sequence corresponding to the codon-harmonized CT-heEF1 γ was synthesized to encode a short E. coli thioredoxin peptide, $6 \times$ His-tag sequence and a thrombin cleavage site upstream the CT-heEF1 γ sequence (Fig. S2). This synthetic gene was cloned into pET-11a for over-expression in E. coli using incorporated NdeI and BamHI. All sequencing was done by GenScript.

Recombinant protein expression

E. coli BL21 Codon Plus cells were transformed with plasmids encoding the full length, NT domain and the CT domain of heEF1 γ . Single colonies were cultured overnight in $2 \times \text{YT}$ (37 °C, 250 rpm) supplemented with 50 μ g/ml of carbenicillin and 34 μ g/ml chloramphenicol. The overnight cultures were diluted 1/50 with fresh $2 \times \text{YT}$ supplemented with 50 μ g/ml of carbenicillin and 34 μ g/ml chloramphenicol and incubated (37 °C, 250 rpm) until the OD_{600} was approximately 0.5. The cultures were incubated on ice bath for 10 min and induced with IPTG to a final concentration of 1 mM and cultured for additional six hours (30 \degree C, 250 rpm). Cells were harvested by centrifugation (5000 \times g, 15 min, 10 °C). Approximately 11 g of wet cell pellet was obtained per liter culture, and the pellet was re-suspended in 35 ml of 50 mM Tris–HCl, pH 7.5, 500 mM NaCl, 15 mM imidazole and 0.02% (w/v) NaN₃ (buffer 1) and frozen (80 °C, 16 h). The frozen cell suspension was thawed at room temperature (22 \degree C) and disrupted by sonication on ice. Soluble cell fraction was obtained by centrifugation (25000 \times g, 25 min, 10 °C).

Protein purification

The soluble cell fraction was subjected to immobilized metal affinity chromatography (IMAC), using immobilized $Co²⁺$ (for FLand NT-heEF1 γ) or Ni²⁺ (for CT-heEF1 γ) chelate resin pre-equilibrated with buffer 1. The IMAC resin was washed with buffer 1 to remove unbound protein, eluted with 50 mM Tris–HCl, pH 7.5, 500 mM NaCl, 250 mM imidazole and $0.02%$ (w/v) NaN₃. Fractions containing eluted proteins were pooled, dialysed (16 h, 2 changes, 4 °C) against 20 mM Tris-HCl, pH 8.3, 125 mM NaCl, 5 mM CaCl₂ and 0.02% (w/v) NaN₃ (buffer 2). The protein sample was treated with thrombin (0.5 U/mg of recombinant protein, 16 h, 22 \degree C). The thrombin-treated protein was subjected to a second affinity chromatography. For FL- and NT-heEF1 γ , the protein sample was mixed with GSH-Agarose (Sigma) beads equilibrated with buffer 2 containing 5 mM DTT. Unbound proteins were eliminated from the beads by extensively washing with 50 mM Tris–HCl, pH 8.0, 1 M NaCl, 5 mM DTT, 1% (v/v) Triton X-100 and 0.02% (w/v) NaN₃, followed by 50 mM Tris–HCl, pH 8.0, 500 mM NaCl, 1 mM DTT, and 0.02% (w/v) NaN₃. Bound proteins were eluted with 10 mM glycine-NaOH, pH 10, 0.02% (w/v) NaN₃, and pH was immediately adjusted to \sim 8.0 by adding 1 M Tris–HCl, pH 7.5 at 20% (v/ v) with the protein fraction. For CT-heEF1 γ , a second immobilized Ni²⁺-IMAC coupled to heparin-Agarose affinity chromatography was used to remove the His-tagged peptide, thrombin and other protein impurities. Fractions containing recombinant proteins were pooled and dialysed against (2 changes, 5 h, 4° C) 5 mM Tris-HCl, pH 7.5, 1 mM DTT and 0.02% (w/v) $NaN₃$ (storage buffer). The purity was analysed by reducing SDS–PAGE [\[22\]](#page--1-0) and the quantity of protein determined spectrophotometrically using theoretically estimated molar extinction coefficient; $86860 M^{-1}$ cm⁻¹ $(FL\text{-}heEF1\gamma)$, 37930 M⁻¹ cm⁻¹ (NT-heEF1 γ) and is 48930 M⁻¹ cm^{-1} (CT-heEF1 γ).

Secondary structure characterization

Far-UV circular dichroism (Far-UV CD) measurements of FL-, NTand CT-heEF1 γ (re-suspended in 0.5 mM Tris–HCl buffer, pH 7.5, containing 0.001 mM EDTA, 0.005 mM DTT and 0.0002% NaN₃) was done at $22 \text{ }^{\circ}\text{C}$ in a Chirascan CD spectrometer. The software

Download English Version:

<https://daneshyari.com/en/article/2020457>

Download Persian Version:

<https://daneshyari.com/article/2020457>

[Daneshyari.com](https://daneshyari.com)