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a b s t r a c t

The function and stability of macromolecular systems, important in industrial and biological processes,
are governed not only by molecular size and shape, but also by temperature-dependent hydrogen bonding
forces and hydrophobicity of the system. Such processes can be found in many facets of chemistry and
biology, most notably in self-assembly processes such as the formation of membranes and micelles in
liquid or surfactant solutions, structuring in polymer/nanoparticle systems and the folding of proteins
into stable, functional complexes.

We explore the range of capabilities to model such systems through classical density functional the-
ory. Examples demonstrate capabilities of providing molecular insight into properties and structure of
branched copolymer/nanoparticle systems, surfactant systems, and grafted polymers. Further opportuni-
ties to extend the theories to supramolecular assemblies and to create hybrid approaches with molecular
simulation are discussed.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Over the past thirty years, molecular modeling has largely been
focused on understanding and explaining bulk homogeneous fluid
behavior. For this reason, a significant increase in the number
of approaches and accuracy of such approaches has been seen.
The increase in both understanding and approaches came as the
model complexity progressed from understanding simple hard
spheres to associating hard spheres to non-spherical and poly-
atomic molecules. Provided these advances, there has been steady
progress to further the understanding of inhomogeneous fluids,
but this progress understandably lags behind bulk phase model-
ing as inhomogeneous theories are commonly perturbations to the
homogeneous model. However, it is believed that this approach is
the reason difficulties in modeling bulk fluid behavior still exist.
That is, a complete and accurate picture of complex bulk fluid
behavior (e.g., in the critical region or hydrogen bonding networks)
is unattainable without a better understanding of the inhomoge-
neous fluid. In response to these sentiments, a shift in research and
development emphasis toward molecular modeling of such inho-
mogeneous fluids has occurred. Accompanying the beliefs of many
in this field is a wide-ranging scientific and industrial interest from
technological processes involving interfaces, confined fluids, and
self assembly. Thus, it is necessary to develop a theoretical tool
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capable of handling mixtures (potentially with trace components)
where characteristics such as the size, shape, and hydrogen bonding
of species are important.

Density functional (DF) methods serve as a valuable theoretical
tool in the study of inhomogeneous fluids. Many of the interest-
ing phenomena observed in biological and soft material systems
involve time and length scales that are inaccessible by the more
traditional methods such as experimentation and molecular sim-
ulation. DF methods have proven to be advantageous in providing
information unavailable from these other methods. Experimental
methods can often be difficult to apply and interpret on micro-
scopic (or smaller) scales. This, in turn, makes it difficult to separate
the effects of individual molecular forces on the system behav-
ior meaning the relevance of competing effects is indiscernible.
Molecular simulations are applicable on such scales; however,
computational cost limits these approaches to systems of small
to medium size molecules without significant coarse graining
for short time periods while many times neglecting the solvent.
Similar to experimental methods, results from molecular simu-
lations typically require additional analytical methods to explain
the underlying physics of the problem through indirect calculation
from mechanical variables. On the other hand, density functional
methods can take advantage of system symmetries to offer a
less computationally demanding approach applicable to a wide
range of problems where molecular level physics are included
explicitly and thermodynamic properties are calculated directly
from the free energy functional. Such systems include copoly-
mers of varying lengths with nanoparticles or surfaces subject to
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a myriad of conditions and easily accounting for solvents explic-
itly. This advantage comes about because molecular simulations
require detailed information about all of the constituent parti-
cles in a system while density functional methods focus on the
direct connection between free energy and the density distribu-
tions of components. The theory incorporates enough molecular
level detail to quickly and accurately provide physical insight to the
system even in complex situations by calculating average proper-
ties directly without considering the detailed motions of individual
particles.

The last two decades have seen the increased usage of density
functional methods to predict the microstructure and thermo-
dynamics of both simple atomic and complex polyatomic bulk
and inhomogeneous fluids. The phrase density functional the-
ory (DFT) refers to both the quantum approach developed by
Hohenberg and Kohn [1] and Kohn and Sham [2] and the classi-
cal approach first applied by Ebner et al. [3]. The work of Kohn
and co-workers is based in quantum chemistry, and their DFT
was originally developed to explain the electronic structure of
an inhomogeneous ground state electronic liquid. The evolution
of DFT eventually led to its application to a classical system by
Ebner et al. to model the interfacial properties of a Lennard–Jones
(LJ) fluid. The classical approach forms the basis of the work pre-
sented here as it was a specific theoretical development to model
inhomogeneous fluids. For this reason, any further mention of
density functional theory refers to the classical version where
the functionals apply to spatial distribution of molecules rather
than electrons. For a detailed background and complete mathe-
matical development, the reader is referred to the work by Evans
[4].

Density functional theory has a statistical mechanics foundation
with a motivation to express the free energy of an inhomo-
geneous system as a unique functional of the density of its
constituent molecules �(r) independent of any external potential.
With this functional, DFT can be used to calculate the equilibrium
structure and thermodynamic functions such as phase behavior,
interfacial properties, surface forces, and molecular structure [5].
Developments have also been made to allow for dynamic and non-
equilibrium problems to be solved by DFT [6]. Because density
functional theory can be used to model a wide variety of physical
systems, DFT is more of a framework to work within rather than
simply a theory as its name implies. The remainder of this review
outlines the basic structure of the theory, addresses approxima-
tions for the free energy functional, and discusses relevant recent
developments within the theory. In addition, several applications
to complex fluid systems are presented and the future direction of
the field is discussed.

2. General formalism

The formalism presented here simply demonstrates the struc-
tural basics of a density functional theory. For this reason, it is
presented for a simple, pure component monatomic fluid. In more
complex cases, it is possible to generalize the DFT to accommodate
polyatomic chains of like or unlike species; however, the general
framework presented here is the same. One must simply make
appropriate approximations of all the underlying physics of the
problem and validate such approximations with experimental or
molecular simulation data. This development presumes an ade-
quate understanding of basic statistical mechanics (see standard
texts by McQuarie [5] and/or Huang [6]).

Consider a monotonic fluid of n molecules, each of mass m at
temperature T and volume V. The Hamiltonian of such a system
has contributions due to kinetic energy (K), potential energy (U),

and the external potential (E). The n molecule Hamiltonian is then
defined as

Hn =
n∑

˛=1

|p˛|2
2m

+
n∑

˛=1

n∑
ˇ=1

u˛ˇ(|r˛ − rˇ|) +
n∑

˛=1

�˛(r˛)

= K + U + E

(2.1)

where p˛ is the momentum of molecule ˛, r˛ is the coordinate vec-
tor for that molecule, u˛ˇ is the intermolecular potential between
molecules ˛ and ˇ at separation |r˛ − rˇ|, and �˛ is the external
potential acting on that molecule at position r˛. Given the defini-
tion of the system, the grand canonical ensemble proves to be the
most appropriate as it has fixed V, T, and chemical potential (�).
The partition function in this ensemble is written in terms of the
Hamiltonian as [7]

� =
∞∑

n=0

eˇ�n

n!h3n

∫ n∏
˛=1

dp˛dr˛e−ˇHn . (2.2)

In this definition, ˇ = 1/kbT is the inverse temperature with kb
and h being the Boltzmann and Plank constants, respectively. The
definition of the grand potential, ˝, then follows as the natural
logarithm of this partition function according to

ˇ˝ = − ln �. (2.3)

The necessary conditions for phase coexistence in any ensem-
ble are equivalent pressures (mechanical stability), temperatures
(thermal stability), and chemical potentials (chemical stability)
in all phases. Two of these conditions, equal temperature and
chemical potential, are implicit by working in the grand canoni-
cal ensemble. The equal pressure condition is implied by further
requiring a fixed grand potential.

In this development, the Hamiltonian and consequently the
grand potential are a functional of �˛(r˛) making them a functional
of the combined term

�(r) = ˇ[� − �(r)]. (2.4)

Using Eq. (2.4) in conjunction with the definition of the ther-

mal de Broglie wavelength
(

� =
√

h2/2�mkbT
)

, the integration

over the momentum coordinates in Eq. (2.2) can be carried out and
simplified to give

� =
∞∑

n=0

1
n!�3n

∫
e−ˇUn

n∏
˛=1

e
ˇ
∑n

˛=1
�(r˛)

dr˛. (2.5)

It is now necessary to define the microscopic density operator

�̂(r) =
n∑

˛=1

ı(r − r˛) (2.6)

where ı is the multidimensional Dirac delta function. The equi-
librium density profile is then defined by the ensemble average
according to

�(r) = 〈�̂(r)〉. (2.7)

Combining these definitions allows one to redefine the poten-
tials in terms of the density profile �(r). Application to Eq. (2.5)
reduces the expression to

� =
∞∑

n=0

1
n!�3n

∫
e−ˇUn

n∏
˛=1

e
ˇ
∫

�(r)�(r)dr
dr˛. (2.8)

Functional differentiation of this expression and application of
the definition of the ensemble average leads to the conclusion

�(r) = 〈�̂(r)〉 = 1
�

ı ln �

ı�(r)
= −ı ln ˝

ı�(r)
. (2.9)
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