Contents lists available at ScienceDirect

Regulatory Peptides

journal homepage: www.elsevier.com/locate/regpep

Proteinase-activated receptor-1 (PAR1) and PAR2 mediate relaxation of guinea pig internal anal sphincter

Shih-Che Huang *

Department of Internal Medicine, E-Da Hospital, Kaohsiung, Taiwan School of Medicine, I-Shou University, Kaohsiung, Taiwan

ARTICLE INFO

Article history: Received 7 April 2013 Received in revised form 3 March 2014 Accepted 4 March 2014 Available online 11 March 2014

Keywords: Proteinase-activated receptor Internal anal sphincter Motility Trypsin Thrombin

ABSTRACT

Activation of proteinase-activated receptor-1 (PAR₁) and PAR₂ stimulates contraction of the rat but relaxation of the guinea pig colon. The aim of the present study was to investigate PAR effects on internal anal sphincter (IAS) motility. We measured relaxation of isolated muscle strips from the guinea pig IAS caused by PAR agonists using isometric transducers. Reverse transcription polymerase chain reaction (RT-PCR) was performed to determine the existence of PAR. In the IAS, thrombin and PAR_1 peptide agonists TFLLR-NH₂ and SFLLRN-NH₂ evoked moderate to marked relaxation in a concentration-dependent manner. In addition, trypsin and PAR₂ peptide agonists 2-furoyl-LIGRLO-NH₂, SLIGRL-NH₂ and SLIGKV-NH₂ produced relaxation. In contrast, both PAR₁ and PAR₂ inactive control peptides did not elicit relaxation. Furthermore, the selective PAR₁ antagonist vorapaxar and PAR2 antagonist GB 83 specifically inhibited thrombin and trypsin-induced relaxations, respectively. RT-PCR revealed the presence of PAR₁ and PAR₂ in the IAS. This indicates that PAR₁ and PAR₂ mediate the IAS relaxation. The relaxant responses of TFLLR-NH₂ and trypsin were attenuated by N(omega)-Nitro-L-arginine (L-NNA), indicating involvement of NO. These responses were not affected by tetrodotoxin, implying that the PAR effects are not neurally mediated. On the other hand, PAR₄ agonists GYPGKF-NH₂, GYPGQV-NH₂ and AYPGKF-NH₂ did not cause relaxation or contraction, suggesting that PAR₄ is not involved in the sphincter motility. Taken together, these results demonstrate that both PAR₁ and PAR₂ mediate relaxation of the guinea pig IAS through the NO pathway. PAR₁ and PAR₂ may regulate IAS tone and might be potential therapeutic targets for anal motility disorders

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Proteinase-activated receptors (PARs) are a unique G proteincoupled receptor family activated by a variety of proteinases including thrombin and trypsin. Proteolysis of the PARs exposes receptor Nterminal sequences which act as activating ligands. Up to date, four subtypes of PARs, PAR₁, PAR₂, PAR₃, and PAR₄, have been described. The activating ligands are SFLLR, SLIGKV and GYPGQV for human PAR₁, PAR₂, and PAR₄, respectively. The PAR₃ peptide, TFRGAP, does not activate its receptor. Thrombin activates PAR₁ and PAR₄ whereas trypsin activates PAR₂. PARs are involved in aspects of both physiology and pathophysiology including inflammation disorders, cardiovascular diseases and cancer [1,2]. In the gastrointestinal system, PARs regulate gastrointestinal motility and secretion and may play important roles in colitis [2–4]. The gastrointestinal tract is exposed to trypsin, tryptase and bacterial proteinase, which can activate PARs [4,5]. Previous studies have demonstrated the effects of PAR on motility of the gastrointestinal and biliary tracts, including the esophagus [6,7], stomach [8–10], duodenum [11], gallbladder [12,13], common bile duct [14] and colon [8,15,16]. In the rat colon, activation of PAR₁, PAR₂ and PAR₄ stimulates contraction [15,16]. In contrast, PAR₁ and PAR₂ activation induces relaxation of the guinea pig colon [8]. In vivo stimulation of both PAR₁ and PAR₂ increases gastrointestinal transit in mice [17]. However, the PAR effects in the internal anal sphincter (IAS) are not known. We hypothesized that activation of PARs may alter IAS motility. The aim of the guinea pig IAS in vitro. We found that activation of PAR₁ and PAR₂ but not PAR₄ promotes relaxation of the IAS.

2. Materials and methods

Thrombin (from bovine plasma), trypsin (from porcine pancreas, type IX-S), amastatin, N(omega)-Nitro-L-arginine (L-NNA), FSLLR-NH₂ (Phe-Ser-Leu-Leu-Arg-NH₂, inactive PAR₁ control peptide) and all buffer reagents were obtained from Sigma Chemical, St. Louis, MO, USA. TFLLR-NH₂ (Thr-Phe-Leu-Leu-Arg-NH₂, selective PAR₁ agonist), SFLLRN-NH₂ (Ser-Phe-Leu-Leu-Arg-Asn-NH₂, PAR₁ agonist), SLIGRL-NH₂ (Ser-Leu-Ile-Gly-Arg-Leu-NH₂, selective PAR₂ agonist), 2-furoyl-LIGRLO-NH₂ (2-furoyl-Leu-Ile-Gly-Arg-Leu-Orn-NH₂, selective PAR₄ agonist), GYPGQV-NH₂ (Gly-Tyr-Pro-Gly-Gln-Val-NH₂, selective PAR₄

^{*} E-Da Hospital, 1 Yi-Da Road, Yan-Chau, Kaohsiung 824, Taiwan. Tel.: +886 7 6150011x2981; fax: +886 7 6150940.

E-mail addresses: shihchehuang@hotmail.com, huangshihche@gmail.com.

agonist), and AYPGKF-NH₂ (Ala-Tyr-Pro-Gly-Lys-Phe-NH₂, selective PAR₄ agonist) were obtained from American Peptide Company, Sunnyvale, CA, USA. SLIGKV-NH₂ (Ser-Leu-Ile-Gly-Lys-Val-NH₂, selective PAR₂ agonist), GYPGKF-NH₂ (Gly-Tyr-Pro-Gly-Lys-Phe-NH₂, selective PAR₄ agonist) and VKGILS-NH₂ (Val-Lys-Gly-Ile-Leu-Ser-NH₂, inactive PAR₂ control peptide) were purchased from Bachem, Bubendorf, Switzerland. Tetro-dotoxin was obtained from Tocris, Cookson, Avonmouth Bristol, UK. Vorapaxar (SCH 530348) and GB 83 were purchased from Axon Medchem BV, Groningen, The Netherlands. RT-PCR reagents and primers for PAR₁ and PAR₂ were purchased from Invitrogen, Carlsbad, CA, and Integrated DNA Technologies, Inc., Coralville, IA, USA, respectively.

2.1. Measurement of relaxation of muscle strips isolated from guinea pig IAS

Male Hartley guinea pigs were obtained from the National Laboratory Animal Center, Taipei, Taiwan. Measurement of relaxation of muscle strips from the IAS was performed according to the procedure published previously [18,19] with modifications [20,21]. Male guinea pigs (350–450 g) were euthanized with CO₂. The anal canal was isolated, cut and placed in standard incubation solution, containing 118 mM NaCl, 25 mM NaHCO₃, 4.7 mM KCl, 14 mM glucose, 1.2 mM NaH₂PO₄, and 1.8 mM CaCl₂, gassed with 95% O₂-5% CO₂. The final pH at 37 $^{\circ}$ C was 7.40 \pm 0.05. The mucosa was removed. The isolated IAS muscle strip, 2×10 mm, was tied at both ends with silk sutures and placed in a 5-ml muscle bath containing the standard incubation solution (37 °C) continuously gassed with 95% O₂-5% CO₂. The strip was connected to isometric transducers (FT.03; Grass Technologies, West Warwick, RI, USA), which was connected to an integrated amplifier and computer recording system (BIOPAC Systems, Santa Barbara, CA, USA). The basal tension of the muscle strips was adjusted to 1.0 g. The experiment was started after a 45-min equilibration period. Only the IAS muscle strips that developed spontaneous tone were used. The spontaneous tone developed after the 45-min equilibration was 2.0 ± 0.1 g (n = 20).

PAR agonists were added to the muscle bath in a non-cumulative fashion, i.e. with single dose administration [6,7,20]. The relaxation responses were represented as a percentage (% papaverine) of the relaxation to 100 µM papaverine. Only one single dose response, with or without a receptor antagonist, tetrodotoxin or the NO synthase inhibitor, L-NNA, was studied with each preparation. For studies using receptor antagonists, tetrodotoxin and L-NNA, the muscle strips were exposed to the indicated concentrations of receptor antagonists, 1 µM tetrodotoxin and 1 mM L-NNA for 6 min, 15 min and 30 min, respectively, and then to PAR agonists. The muscle strips were exposed to 10 µM amastatin, a peptidase inhibitor, for 15 min, and then to the PAR peptide agonists to reduce peptide degradation [6,7,10]. In preliminary experiments, tetrodotoxin, L-NNA and amastatin did not affect basal tension of the IAS. All procedures were approved by the Institutional Animal Care and Use Committee of E-Da Hospital.

2.2. RT-PCR for detection of mRNA for PAR₁ and PAR₂ in guinea pig IAS

RT-PCR was performed for detection of mRNA for PAR₁, PAR₂ and β -actin in the guinea pig IAS as described previously [22,23] with modifications [14]. Total RNA was isolated from the guinea pig IAS using TRIzol reagent and treated with RNAse-free DNAse I. The Superscript II RNase H⁻ reverse transcriptase system was employed for the reverse transcription reaction. PCR amplification for PAR₁ was performed with Taq polymerase for 1 cycle at 94 °C for 2 min, followed by 35 cycles at 94 °C for 30 s, 60 °C for 1 min, 72 °C for 1 min, and finally 72 °C for 5 min. Similarly, PCR amplification for PAR₂ was performed with Taq polymerase for 1 cycle at 94 °C for 15 min, followed by 35 cycles at 94 °C for 30 s, 62 °C for 1 min, 72 °C for 1 min, and finally 72 °C for 10 min. PCR amplification for β -actin was performed with Taq polymerase for 1 cycle at 94 °C for 5 min, followed by 35 cycles at 94 °C for 30 s, 62 °C for 1 min, and finally 72 °C for 10 min. PCR amplification for β -actin was performed with Taq polymerase for 1 cycle at 94 °C for 5 min, followed by 35 cycles at 94 °C for 1 min, 72 °C for 1 min, and finally 72 °C for 10 min. PCR amplification for β -actin was performed with Taq polymerase for 1 cycle at 94 °C for 5 min, followed by 35 cycles at 94 °C for 30 s, 62 °C for 1 min, 72 °C for 1 min, 72 °C for 5 min. After amplification,

the PCR products were subjected to electrophoresis on a 1.5% agarose gel containing ethidium bromide and analyzed under UV light against DNA molecular markers. The PAR₁ and PAR₂ PCR products obtained were ligated into the pTZ57R/T vectors (Thermo Scientific, U.S.A.). The ligation mixture was used to transform *E. coli* strain Top10 to produce permanent clones for automated sequencing at Genomics BioSci & Tech (New Taipei City, Taiwan). The following primers were used:

 PAR_1 : 5'-TGTACGCCTCGGTCATGCTC-3' and 5'-GACACAGACGCAGA GGAGGT-3'

PAR₂ [22,23]: 5'-CATGTTCAGCTACTTCCTCTCT-3' and 5'-GGTTTT AACACTGGTGGAGCTTGA-3'

$\beta\text{-actin:}$ 5'-CAAGGAGAAGCTATGCTATG-3' and 5'-CAAGAAAGGGTG TAACGCAG-3'

The PAR₁ and β -actin primers were designed by Primer3 program and checked by NCBI BLAST for specificity.

2.3. Statistics

Results are expressed as means \pm standard error of the mean (SEM). Dose–contraction curves were analyzed with the use of a nonlinear curve fitting program, GraphPad Prism, version 6, (La Jolla, CA, USA), to determine the half-maximal contraction (EC50) values. Statistical evaluation was performed using one-way analysis of variance (ANOVA) with the Dunnett post hoc procedure or Student's *t*-test when appropriate. *P* < 0.05 was considered statistically significant.

3. Results

3.1. Effects of thrombin and PAR₁ peptide agonists in IAS

In the guinea pig IAS strips, thrombin produced detectable relaxation at 1 μ M. The highest concentration of thrombin tested (10 μ M) caused a relaxant response of $41 \pm 6\%$ (n = 4) of 100 μ M papaverineinduced relaxation (Figs. 1, 2). The PAR₁ peptide agonists TFLLR-NH₂ and SFLLRN-NH₂ caused marked whereas thrombin generated moderate, concentration-dependent relaxation (Figs. 1, 2). TFLLR-NH₂ caused detectable relaxation of IAS muscle strips at 1 µM. The highest concentration (30 µM) of TFLLR-NH₂ tested produced a relaxant response of $81 \pm 4\%$ (*n* = 4) of papaverine-induced relaxation (Figs. 1, 2). Similarly, SFLLRN-NH₂ caused detectable relaxation of the IAS muscle strips at 1 µM. The highest concentration (30 µM) of SFLLRN-NH₂ tested produced a relaxation of $81 \pm 3\%$ (n = 3) of papaverine-induced relaxation. In contrast, the PAR₁ inactive control peptide FSLLR-NH₂, at 30 µM, did not cause contraction or relaxation (Fig. 2). The TFLLR-NH₂-induced relaxation was not altered by 1 µM tetrodotoxin. Specifically, in the presence of 1 μ M tetrodotoxin, 10 μ M TFLLR-NH₂ produced 62 \pm 9% (n = 5) papaverine-induced relaxation (p > 0.05, compared with TFLLR-NH₂ alone, which generated 74 \pm 7%, n = 9, of papaverine-induced relaxation).

The relaxant response produced by TFLLR-NH₂ was attenuated by the NO synthase inhibitor L-NNA. In the presence of L-NNA 1 mM, 10 μ M TFLLR-NH₂ produced a relaxant response of 38 \pm 5% (n = 4) of papaverine-induced relaxation (p = 0.007 < 0.05, compared with TFLLR-NH₂ alone).

3.2. Effects of trypsin and PAR₂ peptide agonists in IAS

In the guinea pig IAS strips, trypsin caused marked, whereas the PAR₂ peptide agonists 2-furoyl-LIGRLO-NH₂, SLIGKV-NH₂ and SLIGRL-NH₂ produced mild to moderate relaxation of the guinea pig IAS in a concentration-dependent manner (Figs. 1, 3). Trypsin caused detectable relaxation at 300 nM, half-maximal relaxation at 520 ± 50 nM and maximal relaxation at $100 \,\mu$ M, which evoked a relaxant response of $83 \pm 1\%$ (n = 4) of $100 \,\mu$ M papaverine-induced relaxation (Fig. 3). 2-Furoyl-

Download English Version:

https://daneshyari.com/en/article/2022429

Download Persian Version:

https://daneshyari.com/article/2022429

Daneshyari.com