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a  b  s  t  r  a  c  t

An  extended  hard-sphere  model  is  reported  that  may  be  applied  to correlate  and  predict  the  viscosity
of  gases,  liquids  and  supercritical  fluids.  The  method  is  based  on  the  hard-sphere  model  of Dymond  and
Assael  and uses  their  roughness  factors  and  molar  core  volumes  to relate  reduced  viscosity  to a  universal
function  of reduced  volume.  The  extended  model  behaves  correctly  in the  limit of  low  densities  and
offers  improved  accuracy  at high  densities.  The  new  universal  reference  function  was  determined  from
a large  database  of  experimental  viscosities  for alkanes  extending  up  to  reduced  densities  of  0.84.  It  has
been  tested  by correlating  the  viscosity  of  two  high-viscosity  liquids  not  used  in  the  development  of the
universal  function  and  has  shown  to perform  satisfactorily  up  to reduced  densities  of  approximately  0.9.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Viscosity is an important transport property from a technolog-
ical point of view and plays an essential part in the calculation of
fluid flow through conduits of all kinds. There is a strong economic
case for developing the means to estimate viscosity accurately and
reliably. For a number of simple pure fluids correlations of criti-
cally evaluated experimental data are available. However, relying
on experimental means alone is not sufficient. For engineering pur-
poses, models are required that can predict the viscosity of fluids,
including mixtures, as a function of temperature, pressure and com-
position. Thus one needs to develop generic predictive models that
have some basis in the underlying physical theory and that are valid
for a plethora of different fluids at different conditions.

This requirement can be satisfied rigorously only for gases
at low densities, where kinetic theory provides the neces-
sary link between molecular and transport properties and the
Chapman–Enskog solution of the Boltzmann equation is valid [1].
Under such conditions, it is possible to predict accurately the
viscosity of a number of simple gases with an accuracy that is
commensurate with the best experimental data [2–6]. No rigor-
ous and complete theory exists for dense fluids, as the general
solution of the Boltzmann equation is not available. The only
tractable solutions developed to date are based on assuming that
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the molecules interact as hard spheres and that their collisions
are uncorrelated. The resulting Enskog equation for the viscos-
ity of a dense hard-sphere fluid has formed the basis for several
semi-theoretical approaches, two  of which in particular have found
practical application: the Dymond and Assael (DA) approach [7–11]
and the Vesovic–Wakeham (VW) model [12–16]. Underlying these
approaches is the idea that the transport properties of real dense
fluids are dominated by repulsive interactions between molecules
and may  be related to those of an equivalent hard-sphere fluid.
The Enskog equation features in these models as an approximation
for the viscosity of the equivalent hard-sphere fluid, and the two
models differ in the way that they address the limitations of this
equation. The present work is related to the DA approach and had
the objective of extending the range of densities over which that
method may be applied reliably in the correlation of viscosity for
pure fluids. This work is however also related to the VW approach in
the following way. The VW approach, in its simplest form [12–14],
seeks to relate the viscosity of an arbitrary mixture to the viscos-
ity of each individual component at the temperature and molar
volume of interest and, for that purpose, accurate correlations of
pure-fluid viscosities are required. A current limitation of the VW
model can be traced to the lack of correlative models that apply at
very high densities which the present extension of the DA model
will help address. More generally, the DA approach can be useful
as a predictive tool for mixtures in its own  right, at least for those
containing molecules from within a single homologous series [9].

In the remainder of this article we first detail the original
DA approach for the correlation of pure-fluid viscosity; we  then
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introduce an extended hard-sphere model based on the excess vis-
cosity as a means of ensuring correct behaviour in the limit of low
density; finally we describe the development and testing of a new
universal reference function for excess viscosity.

2. The hard-sphere model

The hard-sphere model for the transport properties of dense flu-
ids was proposed by Dymond [17,18], and refined into a practical
predictive tool by Dymond, Assael and their collaborators [7–11].
In the smooth-hard-sphere model, all thermodynamic and trans-
port properties are athermal and may  be conveniently expressed as
functions of the reduced volume V* = Vm/V0, where Vm is the molar
volume, V0 = NA�3/

√
2 is the molar volume for close-packed hard

spheres, NA is Avagadro’s constant and � is the diameter of the
molecules. It is also convenient to work in terms of reduced trans-
port coefficients and in the DA approach, the reduced viscosity �*
was defined as follows:
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where �0 is the viscosity of the same system in the dilute-
gas limit. Neglecting higher-order correction factors, �0 =
(5/16�2)(mkBT/�)1/2, where m is the mass of one molecule, and
kB is Boltzmann’s constant. Thus the full expression for �* is
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where M is the molar mass and R the gas constant. In principle,
the reduced viscosity �* of smooth hard spheres can be deter-
mined as a function of V* by molecular simulation. Indeed, the
approach initially used to determine �*(V*) was to combine the
Enskog approximation for the viscosity of smooth hard spheres
with a correction derived from molecular dynamics calculations
[17].

To apply the smooth hard sphere model to systems of real spher-
ical molecules, it is noted that, at sufficiently high densities, the
thermophysical properties of liquids and supercritical fluids are
dominated by repulsive interactions and can be mapped approxi-
mately on to those of the hard-sphere model if the reducing volume
V0 is treated as a weakly temperature-dependent parameter. Thus,
having established the universal function �*(V*) from simulation
and theory, the viscosity of a simple molecular fluid could be corre-
lated along an isotherm by selecting an optimal value of V0 for that
molecule at a given temperature. Considering a range of tempera-
tures, the substance-dependent molar core volume V0 was found
to decrease slowly with increasing T. For practical purposes, V0(T)
is usually approximated by a simple polynomial in T [7,19].

It was found that the hard-sphere model could also be applied
successfully to non-spherical molecules by treating them as rough-
hard-spheres, for which the expression for viscosity is modified by
a simple multiplicative parameter, usually taken to be tempera-
ture independent. Thus, a more general expression for the reduced
viscosity is
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where R� is called the roughness factor [9]. To correlate the exper-
imental viscosity surface �(T,Vm) of a substance, it is therefore
necessary to determine the constant R� and the parameters of V0(T)
that best map  the experimental reduced viscosity �*, defined by Eq.
(3), onto the universal function �*(V*) for smooth hard spheres.

One limitation of the method as originally formulated was  that
the universal function �*(V*) for smooth-hard-spheres was  subject

to significant computational uncertainties at high densities, espe-
cially above the equilibrium freezing density. Thus, in later work,
�*(V*) was parameterised by considering the experimental data
for normal alkanes; this led to a representation of �*(V*) by an
eight-term polynomial in (1/V*) valid in the interval 1.5 ≤ V* ≤ 5,
corresponding to the normal liquid range of many substances [7].
Recent molecular dynamics calculations for smooth hard spheres
provide much improved results [20–22] which we  considered fur-
ther below.

The original hard-sphere scheme for viscosity is successful
within its range of applicability, often representing experimental
data within ±5%. The method was also applied to the thermal con-
ductivity and self-diffusion coefficients for which further universal
reference functions are defined [7]. The same molar core-volume
function V0(T) is used for all three properties of a given substance,
although different roughness factors apply for viscosity, thermal
conductivity and self diffusion. It is important to note that the
method is very sensitive to the values of molar volume used, with
relative errors in Vm typically leading at high densities to rela-
tive errors in � approximately one order of magnitude greater.
Thus, when interpreting experimental data at given temperature
and pressure, one requires precise knowledge of the corresponding
molar volume.

2.1. The extended hard-sphere model

As noted above, the hard-sphere scheme was  restricted to
reduced volumes in the range 1.5 ≤ V* ≤ 5. Outside this interval, the
scheme breaks down; it diverges in the approach to the dilute gas
limit, and also exhibits strong deviations with respect to experi-
mental data at high reduced densities. To address the first of these
deficiencies, Caudwell [23] proposed the use of an excess reduced
viscosity, defined as
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which has the property that ��* → 0 in the dilute gas limit where
� → �0. This ensures that the model behaves reasonably at low den-
sities. Since in the dense fluid region � > >�0, the excess reduced
viscosity ��* does not differ significantly from �* and the two are
essentially identical at high densities. Thus, Caudwell was able to
construct a new universal curve, ��*(V*), by simply matching it to
the original DA correlation for �* over the range 1.25 ≤ V* ≤ 2.5. No
data were fitted in the low-density region V* > 2.5 and the corre-
lation were simply constrained such that ��* → 0 as 1/V* → ∞ by
means of the following polynomial in reduced density:
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In order to address the second deficiency identified above, Ciotta
[24] made use of experimental data for alkanes that extend into the
high density region V* < 1.5. For each substances and isotherm con-
sidered, the data at V* ≥ 1.5 were used to determine the reducing
parameters R� and V0 that best map  the experimental reduced vis-
cosities on to the curve proposed by Assael et al. [7] The data at
smaller reduced volumes were then used to establish the excess
reduced viscosity as a function of reduced volume in an extended
range spanning 1.25 ≤ V* ≤ 1.5. Ciotta [24] developed a correlation
for ��*(V*) in the form of Eq. (5) by fitting these new data and by
matching to the original scheme in the region 1.5 ≤ V* ≤ 2.5.
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