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a b s t r a c t

In spite of recent progress in the field of equations of state, the use of cubic equations of state (EoS) such as
Redlich–Kwong EoS remains common in the industry. It has already been proved that such classical EoS
which follow a mean field approach fail to represent physical properties in the vicinity of the critical point.
Moreover, it is well known that in this area the representation of thermodynamic properties must rely
on scale invariance. In this work, a new Landau-crossover treatment for pure fluids with two parameters
has been applied to a generalized form of cubic EoS. The model calculations have been confronted with
experimental data. The crossover treatment allows a correct representation of PVT values in the critical
region while keeping classical results at distance. Discussion on possible improvements is also provided.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In a context of growing concern about environmental issues,
supercritical processes are becoming more and more attractive.
They are particularly used in the pharmaceutical and food indus-
try where the innocuousness and the physical properties of fluids
like supercritical CO2 are appealing. Besides, supercritical fluids are
not only used as extraction solvents but also as chromatography
eluents, reaction media, etc.

Up to now, two main different approaches have been used to
represent fluids properties in a wide range of PVT values. The first
one is the Landau-crossover method. Successfully employed by
Sengers and coworkers and also by Kiselev in a simplified way
[1], this method consists in rewriting the free energy with the
inclusion of a crossover function. This function allows the renor-
malization of temperature and volume variables as the region
of concern gets closer to the critical point. The phenomenolog-
ical method of Kiselev uses a simple Padé approximant of the
crossover free-energy obtained from the numerical solution of the
renormalization-group equations. It is supposed to deviate from
theoretical solutions [2] but its relative simplicity is fully com-
patible with chemical engineering issues. However, many authors
privileged the second approach: White’s recursive procedure [3,4].
The reason claimed is systematically that this model requires a
reduced number of parameters [5–9]. In this article, it is therefore
our aim to reduce the number of parameters of the Landau-
crossover fitted on experimental data. We shall compare the results
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obtained with those of White’s recursive procedure in a next pub-
lication.

2. Theory

In the classical Landau theory of critical phenomena [10], it is
assumed that the critical part of the free energy, �Ā can be rep-
resented by a Taylor expansion in powers of the order parameter
ϕ:

�Ā =
∑
i=0

∑
j=1

aij�
iϕj (1)

with � = (T/Tc) − 1, ϕ = (V/Vc) − 1 (if the same order parameter as
Kiselev is chosen) and aij system dependent parameters. Therefore,
in the critical region,

�Ā ≈ a12�ϕ2 + a04ϕ4 (2)

since ϕ � 1 and � � 1.
Chen et al. [11] constructed the following crossover expression

for the thermodynamic potential of a system in the critical region:

�Ā = a12�Y (2−�−1)/ωY−�/ωϕ2 + a04ϕ4Y1/ωY−2�/ω − K(�2) (3)

K(�2) is the so-called kernel term which provides the correct
scaling behaviour of the isochoric specific heat asymptotically close
to the critical point. It will not be used thereafter since derivative
properties will not be calculated. The expression (3) is based on the
renormalization-group calculations of Nicoll and Albright [12,13]
and can be rewritten thanks to scaling laws in the form:

�Ā = a12�ϕ2Y (�−2ˇ−˛)/2	1 + a04ϕ4Y (�−2ˇ)/	1 − K(�2) (4)
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Table 1
Values of parameters c and d as a function of the EoS.

EoS Parameter c Parameter d

Van der Waals [22] 0 0
Redlich–Kwong [19] 0 b
Peng–Robinson [21] b(1 −

√
2) b(1 +

√
2)

Harmens–Knapp [35] 1−c∗
2 b +

√((
1−c∗

2 b
)2

− c∗b2

)
1−c∗

2 b −
√((

1−c∗
2 b

)2
− c∗b2

)
Patel–Teja [24] b+c∗

2 +
√(

c∗b +
(

b+c∗
2

)2
)

b+c∗
2 −

√(
c∗b +

(
b+c∗

2

)2
)

In all these equations �, ω, � , ˇ, ˛, � and 	1 are critical expo-
nents.

The values from [14] have been used for the calculations:

˛ = 0.110, ˇ = 0.325, � = 1.239 and 	1 = 0.51

Y is the crossover function and depends on the distance to the
critical point.

It is then easy to verify that, following the proposition of Kiselev,
the renormalization of the variables � and ϕ into (Eq. (5)) allows the
crossover from (4) to (2) to be asymptotically verified.

�̄ = �Y−(˛/2	1) and ϕ̄ = ϕY (�−2ˇ)/2	1 (5)

Starting from a Wegner expansion [15], Kiselev et al. repre-
sented the Helmholtz free energy in a parametric form (6) [16]
which is physically equivalent to the six-term crossover model
[2,17].

�Ā(r, 
) = kr2−˛R˛(q)

[
a�0(
) +

5∑
i=1

cir
	i R−	i (q)�i(
)

]
� = r(1 − b2
2)
ϕ = krˇR−ˇ+1/2(q)
 + d1�

(6)

q is related to the parametric variable r by:

q2 = rg = r

G
(7)

It has been proved that g is proportional to the inverse of the
Ginzburg number which evaluates the size of the fluctuation zone.
The crossover function R(q) was introduced in order to suppress
the singularities in the expansion (6) when q tends to infinity.

It is possible to show (see [18]) that (6) can be written in the
form of (4). Then, considering the link between Y and R(q):

Y(q) =
(

q2

R(q)

)	1

(8)

We take here into account the so-called root-square corrections
for the isochoric specific heat and because of the limits:

R(q)
q→∞−→q2 and R(q)

q→0−→1 (9)

Y(q)
q→∞−→1 and Y(q)

q→0−→q2	1 (10)

this crossover function allows to switch progressively from Chen
et al. expression (4) close to the critical point to the Landau expres-
sion (2) as q increases.

3. Classical equation of state

The Landau-crossover has been applied to a cubic equa-
tion of state. Classical equations of state, like RKS [19,20] and
Peng–Robinson [21], are mainly used in chemical engineering to
represent the behaviour of pure component and mixtures. They
belong to Van der Waals equation’s [22] family which is equivalent

to a (mean field) Landau theory next to the critical point. More-
over, they require only the knowledge of critical properties (Tc and
Pc). Process optimization needs accurate thermodynamics models
which can predict densities and phase equilibria in a large range
of temperatures. The classical equations of state have been mod-
ified several times during the last 30 years particularly in order
to improve the densities determination around the critical point.
Peneloux et al. [23] enhanced the representation of liquid densities
thanks to a volume translation but failed to represent the densi-
ties close to the critical point. Patel and Teja [24] introduced a third
parameter (dependent on critical compressibility) and modified the
attractive part of classical EoS. They improved the representation
of the densities but not satisfactory enough in the critical region.

In this work, the critical part �Ā has been extracted from a gen-
eralized equation of state following Zielke and Lempe [25] concept.
Their generalization presents the advantage to provide a single
form for the calculation of physical properties which is valid for
every cubic EoS. Indeed, a classical cubic EoS can be written as:

P = RT

v − b
− a(T)

(v + c)(v + d)
(11)

where P is the pressure, v is the molar volume, R is the gas constant
and T is the temperature. As shown in Table 1, the two parame-
ters c and d can be expressed from the parameters b and c* of the
original form of the cubic EoS. a(T) depends on the choice of the
alpha function but also on Tc and Pc values as it is explained in Ji
and Lempe paper [26]. The determination of the critical parameters
˝a, ˝b and ˝c* which are linked to a, b and c* in Eq. (12) is done
by solving Eq. (11) developed in volume at the critical point.

a(T) = ˝a
RT2

c

P2
c

˛(T)

b = ˝b
RTc

Pc

c∗ = ˝c
RTc

Pc

(12)

In this paper, we have selected the RKS EoS because it is one of
the mostly used equations in the industry and this equation fails
strongly in the representation of densities. In a near future, we will
also compare our results with the ones obtained following White’s
procedure applied to RKS EoS [5]. Finally, c = 0 and b = d.

An important remark must be made for programming purpose.
If RKS (or PR) EoS is selected, Zc is supposed to be constant for any
fluid. However, our experience proved that if ˝a and ˝b are not
expressed with enough digits, the critical compressibility is not the
one expected. This implies deviations in the calculation of the criti-
cal shift described below. As a consequence, we recommend to use
(Eq. (13)) instead of their evaluation as in the original publication
[19].

˝a = 1
9(21/3 − 1)

˝b = 21/3 − 1
3

(13)
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