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a  b  s  t  r  a  c  t

Known  theoretical  relations  provide  constraints  on  variations  of the  partial  molar  volume  of  an  infinitely
diluted  solute  at:  (1)  low  solvent  densities  (as follows  from  the  truncated  virial  EoS),  (2)  at  the  critical  point
of the  solvent  (as  follows  from  the  near-critical  theory  of dilute  mixtures);  and  (3) at  conditions  where
repulsive  interactions  dominate,  i.e.  at �c1 >  1.5  close  to and  above  the  Boyle  temperature  of  a solvent,
and  �c1 >  3  close  to the  melting  temperature  of  a solvent  (as follows  from  the theory  of  mixtures  of  hard
spheres).  These  constraints  are  discussed  for the  case  of  aqueous  solutions  at  various  temperatures  and
water densities.  The  constraints  provide  rigorous  checks  of  the  quality  of  models  proposed  to  correlate
or predict  V∞

2 values,  and,  if applied  properly,  can  significantly  improve  the  reliability  of predictions  of
both  V∞

2 and  the  fugacity  coefficients  �∞
2 .

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The infinite dilution partial molar volume of a solute, V∞
2 , if

known on an isotherm as a function of the density of a solvent, can
be employed to calculate the infinite dilution fugacity coefficient
of the solute, �∞

2 , the most important for the technological and
scientific applications thermodynamic property of a solute. Here
and below the subscript 2 refers to a solute, 1—to a solvent, the
superscript ∞ denotes the property at infinite dilution, and *—the
property of a pure compound. The calculation of �∞

2 can be done
[1] with the relation:

RT ln �∞
2 =

P∫
0

(
V∞

2 − RT

P

)
dP, (1)

which however, becomes inconvenient at the near-critical condi-
tions where V∞

2 diverges (goes to infinite values). O’Connell, with
coauthors [2,3], proposed the following expression for calculating
�∞

2 :

ln �∞
2 =

�∗
1∫

0

(A∞
12 − 1)

d�∗
1

�∗
1

− ln
PV∗

1
RT

, (2)
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where

A∞
12 = V∞

2
�T RT

, (3)

and �T = 1/V∗
1(∂V∗

1/∂P)
T

is the coefficient of the isothermal com-
pressibility of the solvent. The A∞

12 property is a smooth and
continuous function everywhere, even at the critical point of a
solvent, and thus more convenient for use, especially at low and
near-critical densities. It can be shown that Eq. (2) follows from
another “textbook” relation to calculate �∞

2 [1]:

RT ln �∞
2 =

∞∫
V

[
lim
ni→0

(
∂P

∂ni

)
T,V,nj /=  i

− RT

V∗
1

]
dV − RT ln

PV∗
1

RT
.  (4)

In many cases V∞
2 values are measured only in limited T − P − �

ranges, and need to be predicted. In the literature, there are a num-
ber of theoretical relations for values of V∞

2 , which constrain the
variations of V∞

2 at different temperatures and solvent densities.
When properly applied, these constraints significantly improve the
reliability of prediction of V∞

2 and, therefore, of �∞
2 as well. The goal

of the present work is to discuss the theoretical constraints for V∞
2

values and their applications to aqueous solutions.
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Fig. 1. Values of A∞
12 at the critical isotherm 647.096 K for a number of aqueous

nonelectrolytes, see text.

2. Constraints on the variations of V∞
2

2.1. Constraints in the low-density region of water

At low densities, the virial equation of state is well suited to
describe the thermodynamic properties of mixtures. The virial
equation of state, which has a strict basis in statistical mechanics,
is often represented by the following relation [1]:

PV

RT
= 1 + B

V
+ C

V2
+ · · ·, (5)

where B and C are the temperature dependent second and third
virial coefficients, accounting for the binary and ternary inter-
particle interactions. When applied to the A∞

12 parameter, the
following virial relation is held [3]:

A∞
12 = V∞

2
�T RT

= 1 + 2�∗
1 · B12 + 3(�∗

1)2 · C112 + · · ·,  (6)

where B12 is the cross virial coefficient for the binary water–solute
interactions, and C112 is the cross virial coefficient for the ternary
water–water–solute interactions. While values of C112 are prac-
tically absent, B12 for many water–solute interactions are well
known from the experimental measurements (see review [4]),
high-quality ab initio calculations of the last decade [5–7] and oth-
ers), or can be reliably estimated based on the corresponding-state
correlations developed specifically for aqueous mixtures [8–10].
With the known values of B12 the density range of applicability of
Eq. (6) is expected to be within 1/4–1/3 of the critical density of
a mixture [1], i.e. for water up to 80–110 kg m−3. It could be that
the range of applicability is smaller for bulky solutes [11], and for
solutes with very large negative values of B12, see Fig. 1.

2.2. Constraints in the critical point of water

Theory-based estimates of A∞
12 are possible at low (the virial EoS)

and high solvent densities (a theory of a mixture of hard spheres),
whereas sound estimations of A∞

12 at intermediate densities are
more difficult. A very useful constraint follows from the theory
of diluted near-critical solutions. Thermodynamics of diluted mix-
tures around the critical point of a solvent is governed by the

Krichevskii parameter AKr [12,13], defined as AKr =
(

∂P
∂x2

)c

V,T,x2=0
,

where the superscript c means that the evaluation is conducted
at a critical point. What is important for this work is the relation
between AKr and the A∞

12 parameter in the critical point of a solvent:

A∞
12(Tc1, �c1) = AKr

V∗
c1

RTc1
. (7)

The values of the Krichevskii parameter can be evaluated from
various types of experimental data and are known for more than
50 aqueous solutes [14] with uncertainties of 10–20 MPa  or less. It
means that for many aqueous solutes, the values of A∞

12 at 647.096 K
and 322 kg m−3 (the critical properties of water [15]) are known
with the accuracy of 0.10–0.20 or even better (note that A∞

12 is a
dimensionless property). For experimentally non-studied neutral
solutes, the values of the Krichevskii parameter can often be pre-
dicted, provided that the thermodynamic functions of hydration
(the Gibbs energy, enthalpy, and the heat capacity) for those solutes
are known at the reference temperature of 298.15 K [16].

The constraint given by Eq. (7) is particularly useful because the
overwhelming majority of methods of predicting thermodynamic
properties are based on the so-called “classical” mean-field models
and, therefore, will inevitably fail at the critical point.

The challenges of predicting the density dependence of A∞
12 at

low and moderate densities are illustrated in Fig. 1 for the critical
isotherm. The dashed lines show the initial density slopes of A∞

12
evaluated from the known B12 data (H2 [5], CH4 [6], CO2 [7], NH3
[17], H2O [18], B(OH)3 and Si(OH)4 [19]), and the black circles show
A∞

12 at the critical density (322 kg m−3) calculated with Eq. (7) from
recommended [14] values of the Krichevskii parameter. For each
solute, the line starts with the value of 1 at a zero density, changes
initially as indicated by a dashed line, and comes at the critical
density to the value indicated by a black circle. Water (a solid line)
may  serve as a model for other dissolved species. Generally, initial
slopes and the values at the critical point provide useful constraints
for density variations of A∞

12 at �∗
1 ≤ �c1. Another point to note is

that for H2O, B(OH)3, and Si(OH)4, purely geometric considerations
suggest that the density range of the applicability of Eq. (6) may be
less than 1/4 of the critical density.

2.3. Constraints suggested by the relations from the hard-sphere
EoS

Lee [20] derived from the Mansoori-Carnahan-Starling-Leland
[21] equation of state an expression for the partial molar volume of
the solute in infinitely dilute hard-sphere binary mixtures. For the
case of a constant average packing density of a pure solvent (which
is a fraction of volume occupied by the molecules of the solvent),
the following relation is given:

V∞
2

V∗
1

= N, (8)

where N is a constant that has neither temperature nor density
dependence.

Eq. (8) is expected to be valid at conditions where repulsive
forces dominate. First of all, this is a region of high solvent den-
sities, where interparticle distances are small. While water is a
hydrogen-bonded liquid, one still may  expect [22] the suppression
of the orientation-dependent forces at high densities. Second, at
high temperatures due to a growth of the kinetic energy of parti-
cles, the relative contribution of the attractive forces decreases. As
a result, the second virial coefficients eventually become positive
(manifesting the dominance of the repulsive force) above the Boyle
temperature, which, for water, equal to approximately 1540 K [18].
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