

Available online at www.sciencedirect.com

regulatory **PEPTIDES**

Regulatory Peptides 137 (2006) 162-167

www.elsevier.com/locate/regpep

A new technique for in vivo imaging of specific GLP-1 binding sites: First results in small rodents

Martin Gotthardt ^{a,*}, Georg Lalyko ^b, Julliëtte van Eerd-Vismale ^a, Boris Keil ^c, Tino Schurrat ^b, Michael Hower ^b, Peter Laverman ^a, Thomas M. Behr ^b, Otto C Boerman ^a, Burkhard Göke ^d, Martin Béhé ^b

^a Department of Nuclear Medicine, Radboud University Nijmegen Medical Center, Postbus 9101, 6500 HB Nijmegen, The Netherlands
^b Department of Nuclear Medicine, Philipps-University of Marburg, Baldingerstrasse, 35043 Marburg, Germany
^c Department of Diagnostic Radiology, Philipps-University of Marburg, Baldingerstrasse, 35043 Marburg, Germany
^d Department of Internal Medicine, Ludwig-Maximilians-University of Munich, Marcionistrasse 15, 81377 München, Germany

Received 19 April 2006; received in revised form 13 July 2006; accepted 13 July 2006 Available online 22 August 2006

Abstract

Experimental objectives: In vivo imaging of GLP-1 receptor-positive tissues may allow examination of physiologic and pathophysiologic processes. Based on the GLP-1 analog Exendin 4, we have developed a radiolabeled compound specifically targeting the GLP-1 receptor (DTPA-Lys₄₀-Exendin 4). This work aims to detect GLP-1 receptor-positive tissues by biodistribution studies and in vivo small animal imaging studies. For in vivo imaging, a high-resolution multi-pinhole SPECT (single photon emission computed tomography) system was used in conjunction with an MRI (magnetic resonance imaging) system for image fusion.

Results: DTPA-Lys₄₀-Exendin 4 can be labeled with ¹¹¹In to high specific activity (40 GBq/ μ mol). The radiochemical purity reliably exceeded 95%. Using this compound for in vivo small animal imaging of rats and mice as well as for biodistribution studies, specific GLP-1 binding sites could be detected in stomach, pancreas, lung, adrenals, and pituitary. Receptor-positive tissues were visualized with a high-resolution SPECT system with a resolution of less than 1 mm.

Conclusions: The new technique using DTPA-Lys₄₀-Exendin 4 allows highly sensitive imaging of GLP-1 receptor-positive tissues in vivo. Therefore, intra-individual follow-up studies of GLP-1 receptor-positive tissue could be conducted in vivo. © 2006 Elsevier B.V. All rights reserved.

Keywords: GLP-1; Receptor imaging; Small animal imaging; Single photon emission computed tomography; Magnetic resonance imaging; Exendin 4

1. Introduction

Glucagon-like Peptide-1 (GLP-1) plays an important role in glucose metabolism and homeostasis. GLP-1 is secreted after ingestion of food and induces insulin-release from the pancreas in a blood-glucose level-dependent manner. Due to its glucose-lowering action, GLP-1 or analogs thereof may be used to treat diabetes mellitus type 2 [1]. The insulinotropic action of GLP-1 is mediated by a specific receptor on the β -cells in the islets of Langerhans in the endocrine pancreas [2]. Besides its direct

* Corresponding author. Tel./fax: +31 24 36 15054/18942. *E-mail address:* m.gotthardt@nucmed.umcn.nl (M. Gotthardt). insulinotropic action, GLP-1 also has effects on glucagon secretion and reduces gastric motility, both factors (indirectly) influencing the blood-glucose level [1,3]. Furthermore, it induces proliferation of β -cells [4]. Despite its effects on the pancreas, GLP-1 also seems to play a role in other organ systems. Intracerebroventricular injection of GLP-1 can reduce food intake in rats [5]. Though GLP-1-binding sites are widespread in the brain [6], peptidic hormones do not cross the blood-brain barrier due to their hydrophilicity [7]. The effects of GLP-1 on satiety and food intake may thus be secondary to decelerated gastric emptying [8] or may be mediated by binding to sites in the brain that are not protected by the blood-brain barrier, such as the area postrema in the brain stem [9,10]. Besides in pancreas, stomach [11], and brain, GLP-1 receptor

^{0167-0115/\$ -} see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.regpep.2006.07.005

Fig. 1. Biodistribution of 1 MBq ¹¹¹In-DTPA-Lys⁴⁰-Exendin 4 alone and blocked by co-injection of 100 μ g unlabeled Exendin 4 20 h after injection in mice. Specific uptake in lung, pancreas, and stomach. Due to the large standard deviation, intestinal uptake does not differ significantly.

expression has also been shown on mucous-producing cells of the bronchial mucosa and in the smooth muscle cells of the pulmonary arteries in rat lungs [12,13]. GLP-1 receptor mRNA has been identified in the kidney, duodenum, and heart [14,15]. In liver, skeletal muscle, and adipose tissue, GLP-1 receptor mRNA has not been shown [14]. In contrast to these findings, other studies did not demonstrate specific binding sites in the stomach [16] or indicate that GLP-1 has specific effects on adipose tissue depending on the presence of a receptor [17–19]. Furthermore, studies evaluating distribution of the GLP-1 receptor or the specific uptake in vivo have been done with radioiodinated compounds which are known to show a relatively low uptake as the radionuclide is quickly released from tissue after receptor-mediated uptake of the ligand [19–22].

A technique would therefore be desirable for non-invasive examination of the GLP-1 receptor distribution in vivo. This technique could also allow the detection of tumors expressing the GLP-1 receptor, such as carcinoids [23,24]. Using a modified Exendin 4, we have developed a new GLP-1 receptor-targeting compound for scintigraphic tumor imaging [23]. Exendin 4 is a GLP-1 analog that has been found in the venom of Gilamonsters [25]. Exenatide, which is synthetic Exendin 4, has currently been approved (US) or will be approved in the near future (Europe) for treatment of diabetes type 2 [1,4]. It is metabolically much more stable in comparison to GLP-1, has comparable actions, and shares a 53% homology [25,26]. Due to its higher stability, it is more suitable for radiopeptide imaging or therapy than GLP-1. This compound has therefore been labeled with a so-called residualizing label which is retained in the cell after internalization to improve the target-to-background ratios [22,27,28]. In this communication, we show the first results obtained with the new compound. Besides acquiring biodistribution data, highresolution small animal imaging has been performed.

2. Material and methods

2.1. Tracer labeling

Labeling of the DTPA-conjugated Lys⁴⁰-Exendin 4 was done essentially as previously described [29]. In short, ~40 MBq ¹¹¹InCl₃ in 100 μ L 0.05 M HCl were added to 100 μ L of the peptide solved at a concentration of 50 μ M in ammonium acetate buffer, pH 5.0. After 30 min, quality control was performed using high performance liquid chromatography (HPLC) on a C-18 reverse phase column. Two buffers were used as mobile phase (buffer A 70% actonitrile, H₂O, 0.1% TFA, pH 7.4; buffer B H₂O, 0.1% TFA, pH 7.4) with a linear gradient rising to 70% acetonitrile (100% buffer A) over 30 min.

2.2. Animals, biodistribution studies

Male Wistar rats weighing 250 g were obtained at an age of 8 weeks from Harlan (Horst, The Netherlands). Nude mice (BALBc nu/nu) obtained from Charles River Wiga (Sulzfeld, Germany), were 8 weeks old and weighed 25 g. The animal experiments had been approved by the local animal welfare committees in Nijmegen and Marburg.

For biodistribution experiments 1 MBq ¹¹¹In-DTPA-Lys⁴⁰-Exendin 4 was intravenously injected via the tail vein. Four animals were used per group. The respective control groups were

Fig. 2. Biodistribution of 1 MBq ¹¹¹In-DTPA-Lys⁴⁰-Exendin 4 alone and blocked by co-injection of 100 μ g unlabeled Exendin 4 20 h after injection in rats. Specific uptake in lung, pancreas, spleen, and stomach. Due to the large standard deviation, intestinal uptake does not differ significantly.

Download English Version:

https://daneshyari.com/en/article/2023536

Download Persian Version:

https://daneshyari.com/article/2023536

Daneshyari.com