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a b s t r a c t

Soil organic matter models with complex ecological mechanisms usually include a large number of
parameters than simpler models that omit detailed processes. Finding parameter values for these
complex models is challenging given the poor availability of comprehensive datasets that describe
different processes. Depending on the type of data available, the estimation of parameters in complex
models may lead to identifiability problems, i.e. obtaining different combinations of parameters that give
equally good predictions in comparison with the observed data. In this manuscript, we explore the
problem of identifiability in soil organic matter models, pointing out combinations of empirical data and
model structure that can minimize identifiability issues. We found that only sets of up to 3 or 4 pa-
rameters may be uniquely identifiable, depending on the number of data constrains used for parameter
identification. When only using data on soil respiration fluxes from soil incubations or mass loss from
litter decay studies, up to 2 parameters can be uniquely identifiable independently on the model
structure. For nonlinear microbial models, all parameters cannot be identified simultaneously with mass
loss or respiration data, combined with additional constraints from isotopes. Parameter identifiability
possess series challenges for proposing complex model structures in global soil carbon models given the
limitation of comprehensive datasets at a global scale.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Soil organic matter cycling models are important to integrate
with different sources of information and predict rates of element
cycling in soils (Swift et al., 1979; Paustian et al., 1997; Manzoni and
Porporato, 2009; Sierra et al., 2014). They can also be used for
predicting effects of land-use changes on carbon stocks or conse-
quences of other environmental changes on soil organic matter and
respiration fluxes. These models play an important role in Earth
system models because soils are one of the major global reservoirs
of carbon, but predictions among models disagree considerably
(Friedlingstein et al., 2013; Todd-Brown et al., 2013); therefore,
there is interest in improving the structure and parameterization of
the current generation of soil carbon models.

Obtaining parameter values for soil carbon models can be
challenging, but a new set of data-assimilation techniques are being
used now to integrate data from soil incubation experiments or
litter decomposition studies as well as soil carbon stocks (e.g.,

Tuomi et al., 2009; Sch€adel et al., 2013; Ahrens et al., 2014; Hararuk
et al., 2015; Sch€adel et al., 2014; Hararuk and Luo, 2014). These new
techniques offer a tremendous opportunity to better describe
complex mechanisms of soil organic matter cycling using relatively
simple to collect data such as respiration fluxes from laboratory
incubations or mass loss from litter decomposition experiments.
Furthermore, these techniques can help to determine the kinetic
heterogeneity of the soil organic matter by statistically separating
different pools without resorting to laboratory fractionations
(Sch€adel et al., 2013; Ahrens et al., 2014).

A major challenge however, is to obtain identifiable parameter
sets from data-assimilation procedures given the data available. A
model is said to be identifiable if different values of the parameters
generate different probability distributions of the observable vari-
ables. If multiple parameter sets generate similar probability dis-
tributions for the observed variables the model is said to be non-
identifiable with respect to observations (Brun et al., 2001; Omlin
et al., 2001; Luo et al., 2009; Soetaert and Petzoldt, 2010). In
many cases, the number of parameters to identify in the model
exceeds the number of parameters that can be uniquely identified
from the available data. In these cases it is common to say that the* Corresponding author.
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model is overparameterized with respect to the observations (Beck,
1987; Brun et al., 2001). This issue leads to problems in data
assimilation such as poor convergence properties in optimization
routines (Brun et al., 2001), and strong correlations among ob-
tained posterior values in Bayesian optimization methods. This is
similar to collinearity in regression; if a model is non-identifiable
with respect to observations the obtained parameter values may
compensate each other and themodel output is insensitive to these
changes in parameters when compared with the available data.

The identifiability problem, also called equifinality in other
contexts, has been addressed previously in hydrology under the
framework of the generalized likelihood uncertainty estimation
(GLUE, Beven and Binley, 1992; Beven and Freer, 2001; Beven,
2006); and has been applied to soil organic matter modeling by
Wetterstedt and Ågren (2011) and Sierra et al. (2012b). However, an
alternative and more intuitive framework has also been proposed
by Brun et al. (2001) to establish the set of parameters that can be
uniquely identified given an existing dataset; where uniquely is
understood in the sense of unique probability distributions gener-
ated from the parameter sets. The method consists of calculating a
collinearity index given certain model structure and available data.
The index informs about the degree of near linear dependence by
which changes in parameter values predict the same dataset
equally well. When the collinearity index is high, a change in the
value of one parameter is compensated by a change in other pa-
rameters generating almost identical probability distributions for
the observed variables.

We use here this alternative identifiability framework to
determine the type of model structures, and number of parameters
for each model structure, that can be uniquely identified with easy-
to-collect datasets in soil organic matter studies. First, we per-
formed a theoretical analysis to determine combinations of pa-
rameters and available datasets that lead to identifiability problems
in soil incubation experiments. Second, we used data from an in-
cubation with data on soil CO2 release rates to obtain parameter
values for differentmodels and determine the cases associatedwith
identifiability issues. Our objective is to provide recommendations
about the complexity of the models that can be identified with
specific empirical data.

2. Methods

Two types of analyses are presented here; first, we show a
theoretical analysis of the type of models and number of parame-
ters that can be estimated with data from soil incubation experi-
ments under the assumption of perfect data; i.e. artificially
generated data from a known model. We consider two cases, linear
compartment models and nonlinear microbial-explicit models.
Second, we use observed data from an incubation experiment that
contains measurement uncertainty and perform a parameter esti-
mation procedure for different model structures. The first analysis
relies on the calculation of a collinearity index while the second
analysis uses inverse parameter estimation techniques. These are
described in the following sections.

2.1. Collinearity index

The identifiability analysis used here and the calculation of the
collinearity index was initially described in Brun et al. (2001),
applied in Omlin et al. (2001) and Medlyn et al. (2005), and
implemented in the UNCSIM computer program (Reichert, 2005)
and in R package FME (Soetaert and Petzoldt, 2010). The procedure
consist of two-steps, first a sensitivity matrix for all model pa-
rameters is calculated, and second the collinearity index is calcu-
lated from this sensitivity matrix for different combinations of

parameter sets. This matrix, which its elements consists of
dimensionless sensitivities of model output with respect to pa-
rameters, is calculated according to the expression

Si;j ¼
vri
vQj

$
wQj

wri
; (1)

where Si;j represents each entry of thematrix, ri aremodel residuals
calculated from a cost (objective) function evaluated at the time
point where observations are available,Qj is a model parameter,wri
is the scaling of ri, and wQj is the scaling of parameter Qj (Soetaert
and Petzoldt, 2010).

For different combinations of columns of the sensitivity matrix,
which express parameters that will be identified with available
data, the collinearity index g is defined as

g ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min

�
EV

hbSubSi�r (2)

with

bSij ¼ SijffiffiffiffiffiffiffiffiffiffiffiffiP
jS

2
ij

q (3)

where bS contains the columns of the sensitivity matrix that
correspond to the parameters included in the set, and EV represents
the eigenvalues of the matrix bSubS. If g ¼ 1, the columns are
orthogonal and the parameter set is identifiable. If g/∞, the pa-
rameters are linearly dependent (Brun et al., 2001; Soetaert and
Petzoldt, 2010). The value of the collinearity index g has an intui-
tive interpretation; a change in the residuals caused by a change in
one of the parameters can be compensated by a proportional
change 1=g in another parameter. For example, a value of g ¼ 20
means that a change in residuals caused by a change in one
parameter value can be compensated by changing another
parameter value by 5%. As the value of g increases, smaller changes
in parameter values are required to compensate changes among
each other (Brun et al., 2001).

2.2. Expected empirical data

For the identifiability analysis of soil incubation data, we expect
that the soil carbon stock at the beginning of the experiment and
the CO2 evolution rates over time are always available. In addition,
we assume that isotopic data may be available from the experiment
either in the form of stable or radioactive isotopes. For simplicity,
we assume that D14C values of the respired CO2 over time, and the
D14C value of the carbon stock may also be available.

Two distinct groups of models were considered, linear
compartment models with first order rates, and a two-pool
nonlinear model with an explicit microbial pool and Michae-
liseMenten kinetics.

The set of linear models can be expressed in matrix form as
(Sierra et al., 2012a)

dC
dt

¼ I þ A$C; (4)

where C is a vector of carbon pools, I a vector of carbon inputs to
soil, and A a matrix of decomposition and transfer rates among
compartments. This matrix can be split as A ¼ T$K, i.e. a matrix of
transfer coefficients among compartments and a matrix with
decomposition rates ki in the diagonal. The matrix of transfer co-
efficients contains �1 in the diagonal, and in the off-diagonal

C.A. Sierra et al. / Soil Biology & Biochemistry 90 (2015) 197e203198



Download English Version:

https://daneshyari.com/en/article/2024393

Download Persian Version:

https://daneshyari.com/article/2024393

Daneshyari.com

https://daneshyari.com/en/article/2024393
https://daneshyari.com/article/2024393
https://daneshyari.com

