[Soil Biology & Biochemistry 84 \(2015\) 65](http://dx.doi.org/10.1016/j.soilbio.2015.01.021)-[74](http://dx.doi.org/10.1016/j.soilbio.2015.01.021)

Contents lists available at ScienceDirect

Soil Biology & Biochemistry

journal homepage: www.elsevier.com/locate/soilbio

Anaerobic digestates lower $N₂O$ emissions compared to cattle slurry by affecting rate and product stoichiometry of denitrification $-$ An N2O isotopomer case study

Jan Reent Köster ^{a, *}, Laura M. Cárdenas ^b, Roland Bol ^c, Dominika Lewicka-Szczebak ^d, Mehmet Senbayram ^e, Reinhard Well ^d, Anette Giesemann ^d, Klaus Dittert ^{e, f}

a Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Str. 2, 24118 Kiel, Germany

^b Rothamsted Research, North Wyke, Okehampton EX20 2SB, UK

^c Terrestrial Biogeochemistry Group, Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany

^d Thünen Institute of Climate-Smart Agriculture, Federal Research Institute for Rural Areas, Forestry and Fisheries, Bundesallee 50, 38116 Braunschweig, Germany

e Institute of Applied Plant Nutrition (IAPN), University of Göttingen, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany

f Department of Crop Science, Section of Plant Nutrition and Crop Physiology, University of Göttingen, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany

article info

Article history: Received 22 July 2014 Received in revised form 20 January 2015 Accepted 21 January 2015 Available online 7 February 2015

Keywords: Nitrous oxide Organic fertilizer Biogas Nitrification Site preference N2O reduction Source partitioning

ABSTRACT

Assessing effects of organic fertilizer applications on N2O emissions is of great interest because they can cause higher N2O emissions compared to inorganic fertilizers for a given amount of added nitrogen (N). But there are also reports about enhanced N_2O reduction to climate-neutral elemental N_2 after application of organic manures to soils. Factors controlling the $N_2O/(N_2O + N_2)$ product ratio of denitrification are interrelated, and also the ratio is difficult to study because of limitations in N_2 flux measurements. In this study, we investigated N_2O and N_2 emissions from soil treated with organic fertilizers with different C/N ratios. An N₂O isotopomer approach combined with conventional N₂O and N₂ flux measurements was employed to study underlying microbial pathways.

A grassland soil was amended with anaerobic digestate (AD) from food waste digestion (low C/N ratio) or cattle slurry (CS; high C/N ratio), respectively, adjusted to 90% WFPS, and incubated for 52 days under helium-oxygen atmosphere (10% O₂) using a soil incubation system capable of automated N₂O, N₂, and CO₂ measurements. N₂O isotopomer signatures, i.e. the δ^{18} O and SP values (site preference between ^{15}N at the central and the peripheral position in the N2O molecule), were determined by Isotope Ratio Mass Spectrometry and used to model and subsequently estimate the contribution of bacterial denitrification and autotrophic nitrification to N₂O production. For this approach the direct determination of emitted N₂ is essential to take isotope effects during N_2O reduction to N_2 into account by correcting the measured isotope signatures for isotope effects during N2O reduction using previously determined fractionation factor ranges.

The addition of both organic fertilizers to soil drastically increased the rate of gaseous N emissions $(N_2O + N_2)$, probably due to the effects of concurrent presence of nitrate and labile C on the denitrification rate. In the initial phase of the experiment (day 1 to \sim 15), gaseous N emissions were dominated by N₂ fluxes in soils amended with organic manures; meanwhile, N₂O emissions were lower compared to untreated Control soils, but increased after 15-20 days relative to the initial fluxes, especially with CS. Extremely low N₂O, but high N₂ emissions in the initial phase suggest that reduction of N₂O to N₂ via denitrification was triggered when the soil was amended with organic fertilizers. In contrast in the untreated Control, N₂O release was highest during the initial phase. Total N₂O release from AD treated soil was similar to Control, while N_2O from CS treated soil was considerably higher, indicating that denitrification was triggered more by the high labile carbon content in CS, while the cumulative $N_2O/$ $(N₂O + N₂)$ product ratio and thus N₂O reduction were similar with both organic fertilizers.

E-mail address: jan.reent.koester@nmbu.no (J.R. Köster).

^{*} Corresponding author. Present address: Department of Environmental Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway. Tel.: þ47 6723 1864.

The results of the N₂O source partitioning based on the isotopomer data suggest that about 8–25% (AD) and 33–43% (CS) of the cumulated N₂O emission was due to nitrification in organically amended soil, while in the untreated Control nitrification accounted for about $5-16%$. The remaining N₂O production was attributed mainly to denitrification, while the poor model fit for other source pathways like fungal denitrification suggested their contribution to be of minor importance. The observed rather distinct phases with predominance first of denitrification and later of nitrification may help developing mitigation measures by addressing N2O source processes individually with appropriate management options. The observation of relatively large shares of nitrification-derived N_2O is surprising, but may possibly be related to the low soil pH and will require further investigation.

The determination of N_2 production is essential for this isotopomer-based source partitioning approach, but so far only applicable under laboratory conditions. The results of this study indicate that the combination of N₂O δ^{18} O and SP values is very useful in obtaining more robust source estimates as compared to using SP values alone.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Nitrous oxide (N_2O) is a potent greenhouse gas (GHG; [Stocker](#page--1-0) [et al., 2013\)](#page--1-0) and ozone depleting substance affecting the stratospheric ozone layer [\(Ravishankara et al., 2009\)](#page--1-0). Increasing atmospheric $N₂O$ concentrations are caused by anthropogenic activities, in particular by the intensification of agriculture production and introduction of huge amounts of reactive nitrogen (N) species into the global N cycle ([Galloway et al., 2004](#page--1-0)).

N₂O mainly derives from agricultural soils, where high N fertilizer inputs are directly related to N_2O production ([Mosier et al.,](#page--1-0) [1998; Galloway et al., 2004](#page--1-0)), resulting in $2-2.5%$ conversion of fertilizer N to N_2O [\(Davidson, 2009\)](#page--1-0). However, understanding of factors controlling N_2O production and consumption processes in soils has still to be improved to implement more advanced mitigation strategies to reduce undesirable side effects of fertilizer use.

Renewable energy sources like biogas produced from various organic substrates like food waste, animal wastes, and energy crops for generating electricity and heat are explicitly promoted and gained importance in several European countries ([Herrmann and](#page--1-0) [Rath, 2012](#page--1-0)). The residues of the biogas fermentation process, anaerobic digestates (AD), are mostly applied to agricultural land as 'organic' fertilizers. However, AD may, similar to other organic fertilizers (e.g. livestock manures, human waste), increase N_2O emissions from soils compared to mineral N fertilizers (e.g. Senbayram et al., 2009; Köster et al., 2011), because residual organic carbon substrates favor microbial denitrification, the respiratory nitrate reduction, in soils ([Robertson and Groffman, 2007\)](#page--1-0).

Various stable isotope techniques have been developed to study N transitions and to differentiate N₂O source processes as reviewed by [Baggs \(2008\).](#page--1-0) However, they are all afflicted with various shortcomings. Recently, the analysis of isotopomers, the intramolecular ^{15}N distribution in the linear asymmetric N_2O molecule, has been introduced as a mean of differentiating source processes ([Toyoda and Yoshida, 1999; Yoshida and Toyoda, 2000\)](#page--1-0). In addition to bulk isotope signatures, the parameter 'site preference' (SP), defined as the difference of $\delta^{15}N$ at the central (α) and the peripheral (β) position of the N₂O molecule has been proposed. Distinct $N_2O \delta^{15}N^{bulk}$, $\delta^{18}O$, and SP signatures have been identified to be specific for bacterial denitrification (including nitrifier denitrification), nitrification (i.e. ammonium oxidation via hydroxylamine), or fungal denitrification ([Sutka et al., 2003, 2004, 2006,](#page--1-0) [2008; Toyoda et al., 2005](#page--1-0)), and the SP is considered to be independent of the isotopic signature of the precursor species ([Toyoda](#page--1-0) [et al., 2002\)](#page--1-0). However, this approach may be complicated by some overlap of signatures of autotrophic nitrification and fungal deni-trification [\(Sutka et al., 2006, 2008\)](#page--1-0), and by N_2O reduction to N_2 altering the $N₂O$ SP [\(Ostrom et al., 2007](#page--1-0)). Additional information may be obtained by the relationship of N_2O $\delta^{18}O$ and SP values, which have been shown to be linearly correlated with the SP in N_2O significantly affected by $N₂O$ reduction ([Jinuntuya-Nortman et al.,](#page--1-0) 2008; Well and Flessa, 2009a; Köster et al., 2013b), but interpretation of isotopomer results still remains challenging ([Decock and](#page--1-0) [Six, 2013](#page--1-0)). However, this approach can provide valuable information on N2O releasing soil processes, especially when combined with other techniques like direct measurements of the main denitrification products N_2O and N_2 .

Recent developments and application of improved process models promote the understanding of isotope effects during N_2O production and consumption processes and associated fractionation factors, thus allowing better estimations on source processes ([Toyoda et al., 2011; Lewicka-Szczebak et al., 2014](#page--1-0)).

The objectives of this study were to compare organic fertilizers of different C/N ratio for their effect on total N_2O and N_2 losses by denitrification and associated changes in the $N_2O/(N_2O + N_2)$ product ratio. Therefore, an incubation experiment was carried out under conditions favorable for denitrification. The use of an $N₂$ -free helium-oxygen incubation atmosphere in an automated soil incubation system allowed direct simultaneous measurement of N_2 O, N_2 , and CO₂. Denitrification was expected to be the major microbial pathway contributing to $N₂O$ production, though also nitrification (i.e. ammonium oxidation via hydroxylamine) was expected to play a role following the application of AD and cattle slurry (CS) as ammonium based organic fertilizers. This was to be confirmed by applying the N_2O isotopomer approach, as nitrification-derived N₂O is characterized by higher δ^{18} O and SP values. ¹⁸O and site-specific ¹⁵N fractionation factors may vary over relative wide ranges, which thus was taken into account. N_2O source partitioning was conducted independently using N_2O $\delta^{18}O$ and SP signatures, respectively, to cross-check the N_2O source estimates.

2. Materials and methods

2.1. Sampling and properties of soil and organic fertilizers

The soil was collected in Rowden Moor $(50^{\circ}46^{\prime}26^{\prime\prime}N,$ 03°55'47"W; 162 m above sea level), Okehampton, Devon, UK. This soil is classified as a Hallsworth Series soil, which is a clayey noncalcareous Pelostagnogley in head from clay shale [\(Harrod and](#page--1-0) [Hogan, 2008\)](#page--1-0). The bulk density was about 0.9–1 g cm^{-3} . The sampling site had previously been in grassland use but it has been left fallow for the last ten years. The upper 2 cm of soil and roots Download English Version:

<https://daneshyari.com/en/article/2024545>

Download Persian Version:

<https://daneshyari.com/article/2024545>

[Daneshyari.com](https://daneshyari.com)