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a  b  s  t  r  a  c  t

A  new  method  of  modeling  free  energy  in  a lattice  fluid  is  developed  and  shown  to be  capable  of  correlating
non-ideal  behavior  in  vapor–liquid  equilibria.  The  success  of  the  analysis  is based  largely  on  two  ideas.  The
first is to  express  the  partition  function  as the  product  of two partition  functions  one  for  intramolecular
bonds  (internal  degrees  of  freedom)  and one  for  intermolecular  bonds  (molecular  interactions)  and  then
to treat  these  bond  types  separately  in  the analysis  of  interaction  energy  and  configurational  degeneracy.
The  transformation  used  to  separate  the  bond  types  makes  a molecule  look  like  it  is  monatomic  in  the
transformed  lattice  and  significantly  reduces  the  complexity  of  the analysis.  It also  excludes  the molar
cell volume  associated  with  intramolecular  bonds  from  the  total  cell  volume  in  the  transformed  lattice.
The  second  idea  is  that  when  the  molecular  configuration  for  the  system  being  modeled  is specified
appropriately,  strong  energetic  effects  can be accounted  for based  on  a random  distribution.  Interaction
energy  is  modeled  using  a modified  mean  field  theory  in  which  a nearest  neighbor  interaction  is defined
to  occur  between  the  closest  neighbors  in  line  of  sight.  All  nearest  neighbor  interactions  separated  by
the  same  distance  are  assigned  the  same  interaction  energy.  This  allows  interaction  energy  to  depend
on  separation  distance.  Pure  component  models  are  developed  and  compared  with  experimental  data
for four  distinct  cases:  (1) linear  molecules  (n-alkanes);  (2) molecules  that  form  clusters  (water);  (3)
polymers  and  non-linear  molecules  (benzene);  and  (4)  helium  which  exhibits  quantum  effects  as  a liquid.
The  simplest  form  of  the  equation  of  state  derived  is  shown  to be  capable  of  predicting  pure  component
phase  equilibrium  behavior  in  reasonably  good  qualitative  agreement  with  observed  behavior.  The  size
factors  in  the  model  are  shown  to be well  correlated  with  the  acentric  factor.  A  multicomponent  model  is
developed  and  compared  with  experimental  data  for the  non-ideal  binary  mixture  of 1,1-difluoroethane
(HFC152a)  and n-butane  (azeotrope  formation).

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The work presented in this article explores a new approach for
deriving equations of state (EOS) using the methods of applied
statistical mechanics in a lattice fluid. Literature on the devel-
opment of lattice models is extensive [1–19]. A good review of
the type of analysis undertaken in this article can be found in
[1].

The models developed here assume that intermolecular inter-
actions cause a time weighted average ordering of molecules into
a lattice structure in both the liquid and vapor states. Lattice sites
are considered to be locations of local minima in interaction energy.
The constant buffeting of molecules due to thermal motion knocks
molecules from one lattice site to another.
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The lattice is viewed as a molecular network with connections
between molecules occurring along lattice generating lines. The
network is considered to be a supermolecule [20–22], see Fig. 1(a).
Each type of network connection is assigned an interaction energy
characteristic of the type of connection. This energy connection can
be further developed by assuming the strength of a connection is
related to the separation distance in the lattice. This is done in the
water model.

Fluid particles can always be considered to be randomly dis-
tributed throughout the volume they occupy because on average
they always completely and uniformly fill that space. When build-
ing applied statistical mechanics models of fluids using hard
spheres an understanding of the nature of the particle being
modeled is important to the success of the model. In the water
model developed below the particle is not a water molecule
but instead a cluster of water molecules. This abstraction has
been demonstrated to be useful [23–25]. It is the cluster that
is considered to be randomly distributed. An individual cluster
may  not be long lived but any fleeting existence is assumed
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molecule/particle

(a) supermolecule

interaction bond

(b) lattice cell model

Fig. 1. Two views of the lattice used in this work. (a) Lattice network connected
supermolecule. (b) Lattice cell model used showing interaction bonds.

to be averaged out so that a cluster behaves like a long lived
entity.

Models are developed and compared with experimental data
for: (1) linear molecules (n-alkanes); (2) molecules that form clus-
ters (water); (3) polymers and non-linear molecules (benzene); and
(4) helium which exhibits quantum effects as a liquid. The analysis
is extended to mixtures and applied to the non-ideal mixture of
HFC152a and butane at 273 K and 293 K.

2. Canonical partition function

The canonical partition function Q is treated as the product of
a molecular partition function q(T) that depends on temperature T
and an interaction partition function qI(T, �) that depends on tem-
perature and volume fraction �. Total volume V is divided into M
equal cells each with volume v. When only one molecule occu-
pies one cell volume fraction is N/M, where N is the number of
molecules.

Interaction energy is defined as the amount by which the energy
exceeds the value it would have if all molecules were infinitely far
apart from each other. If the total energy is E when the molecules
are contained in V and E0 when separated, interaction energy EI =
E − E0. If EI is negative molecules are attracted to each other. If they
repel each other work must be done to bring them together and so
EI is positive.

The partition function is

Q = q(T)NqI(T, �)N = q(T)N
∑

n

˝ne−EI,n/kT . (1)

where ˝n is the number of configurations with interaction energy
EI,n and k is Boltzmann’s constant. The sum of all ˝n is the config-
urational degeneracy ˝.

A configurational degeneracy weighted interaction energy is
defined as

e−EI/kT =
∑

n˝ne−EI,n/kT

˝
. (2)

This allows the Helmholtz free energy F to be written as

F

kT
= −ln Q = EI

kT
− ln  ̋ − N ln q(T). (3)

The equilibrium value of the interaction energy, denoted by UI ,
is related to EI; UI = −T2∂(EI/T)/∂T .  The two are the same when EI

does not depend on temperature. The model of EI is presented in
the next section.

3. Interaction energy

The lattice cell model used in this work is a modification of the
Lennard-Jones and Devonshire (LJD) [26] lattice cell model to allow

for vacant lattice cells, see Fig. 1(b). LJD cell theory is a lattice based
model of the liquid state [27]. It is the prototype microscopic model
used to predict the liquid–vapor critical point of a simple fluid [27].
In its simplest form it is used to introduce mean field theory in a
number of standard texts and extensions of the model are in use
today for research applications [27–29].

In standard mean field theory interactions occur only between
nearest neighbors. All nearest neighbor interactions have the same
energy. And nearest neighbors are adjacent to each other. Here a
nearest neighbor is redefined to mean the nearest neighbor in direct
line of sight along a lattice generating line. Nearest neighbors can
be separated by any number of vacant lattice cells.

To start the analysis a molecule is treated like a single par-
ticle occupying one cell with a time weighted average location
at a lattice point, i.e. at the center of a lattice cell. Fig. 1(b)
illustrates how interactions are accounted for in this model. A
black dot represents a particle residing in a cell which is repre-
sented by a white circle. In the illustration a particle makes six
nearest neighbor intermolecular bonds. When an adjacent cell is
unoccupied the bond extends through the cell to the first occu-
pied cell. Bonds are shown occurring between nearest neighbors
along lattice generating lines. Three types of bonds are shown:
three-first, two-second and one-third nearest neighbor. Each type
of bond is assigned a characteristic energy. An individual par-
ticle appears to be affected by only its nearest neighbors. But
this is not so because all particles are connected to each other
through the network. Interaction energy resides in the network.
It is accounted for through nearest neighbor bonds. The network
connected particles is seen as a supermolecule as illustrated in
Fig. 1(a).

N particles can make (z/2)N  connections in the lattice. Here z is
the lattice coordination number. In a volume divided into M cells,
the maximum possible number of connections is (z/2)M.  Define
an interaction bond fraction Y as the ratio of the actual number of
interaction bonds to the maximum possible number of bonds so
that;

Y =
(

z/2
)

N(
z/2

)
M

= N

M
= vN

vM
= �. (4)

Interaction bonds are classified according to their separation
along a lattice generating line as illustrated in Fig. 1(b). A first
nearest neighbor bond occurs between adjacent particles on a lat-
tice line. The number of first neighbor bonds is (z/2)MY2. This
results from assuming the time weighted position of a parti-
cle is at a lattice site. A second neighbor bond occurs between
particles separated by one vacant site. The number of second
neighbor bonds is (z/2)MY(1  − Y)Y . The number of nth neigh-
bor bonds is (z/2)MY(1  − Y)n−1Y . The total number of bonds
is

z

2
MY2

∞∑
n=1

(1 − Y)n−1 = z

2
MY2 1

Y
= z

2
N; (5)

the sum extends to infinity because of the large number of
particles.

It is assumed that all nth neighbor bonds have the same energy
ωn. Therefore the total interaction energy is

EI = z

2
MY2

∞∑
n=1

(1 − Y)n−1ωn = z

2
NY

∞∑
n=1

(1 − Y)n−1ωn. (6)
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