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a  b  s  t  r  a  c  t

A  statistical  mechanical  equation  of  state  is  developed  to predict  the  volumetric  properties  of  pure  and
mixture liquid  alkali  metals  at different  temperatures,  pressures  and  compositions.  The  temperature
dependent  parameters  of  the  equation  of  state  have  been  calculated  using  corresponding  states  correla-
tion  based  on  the  normal  boiling  point  parameters  as scaling  constants.  It is  shown  that  the  knowledge  of
just normal  boiling  point  and  its liquid  density  are  sufficient  to  estimate  the  thermodynamic  properties  of
pure  and  mixture  liquid  alkali  metals  in  different  conditions.  Besides,  the  performance  of  artificial  neural
network  (ANN)  based  on  back  propagation  training  with  10 neurons  in  hidden  layer  for  prediction  of
behavior  of  presented  systems  was  investigated.  A collection  of 512  data  points  for  above  systems  in  dif-
ferent  temperatures  and  pressures  was  used.  The  Tao–Mason  equation  of  state  (TM  EOS)  and  ANN  model
results  have  good  agreement  with  the  experimental  data  with  absolute  average  deviations  of 0.74%  and
0.299%,  respectively.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Metals, both in liquid and vapor states, have complex structures.
They widely used in modern science and technology, including
in nuclear energetic, emission electronics, new power-intensive
chemical current sources, medicine and act as coolant in nuclear
power plants [1,2]. They could be also more effectively used in
extraction metallurgy, especially in that some precious metals from
their ores and wastes [2]. These applications need the knowledge of
high temperature properties of alkali metals because these metals
are heated to high-temperatures in these applications [3]. The
achievement of high temperature in real case is a difficult proto-
col and studying the theoretical treatment of metals is good choice
to predict and correlate the high-temperature properties of liquid
alkali metals. In these circumstances the development and applica-
tion of novel modeling such as equation of state and artificial neural
network to predict the thermodynamic properties of liquid alkali
metals is great interest.

Liquid alkali metal and their alloys have been studied widely
during the last decades by several researchers [4–11]. For exam-
ple Eslami [7,8] applied the Ihm–Song–Mason (ISM) equation of
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state for pure alkali metals and their alloys using the correspond-
ing states correlation based on heat of vaporization and the freezing
point density. A perturbed hard sphere EOS has been developed
for pure alkali metals by Maftoon-Azad et al. [9]. Six hundred and
ninety four data points at different pressures and temperatures are
examined and the average absolute deviation of predicted liquid
density data compared to experiments is 1.41%. Besides, Mozaffari
et al. [11] extended this equation of state to calculate the liquid
density of alkali metal alloys over a wide range of temperature.
Mousazadeh et al. [12] focused on application of perturbed-chain
statistical associating fluid theory (PC-SAFT) for prediction of pure
and mixtures alkali metal properties. It was found that the method
efficiently is able to predict the density of binary and ternary alkali
metal alloys of Cs–K, Na–K, Na–K–Cs, at various temperatures in
the range of freezing point up to several hundred degrees above the
boiling point. Besides, Moosavi and Sabzevari [13] extended a new
equation of state (EOS) which reported for pure liquid alkali metals
[14] to predict the density and other thermodynamic properties of
binary molten alloys of Na–K and Cs–K in range of freezing point up
to several hundred degrees above the boiling point using quadratic
mixing rules along with the mean geometry approximation (MGA).

However different authors used different equations of state
(EOS) and auxiliary methods to predict and reproduce the ther-
modynamic properties of these systems. Some of these attempts
are restricted to the limited ranges of temperature and pressure
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and their results to predict the thermodynamic properties of these
systems show different degrees of accuracy.

However, in spite of their applicability there are some lim-
itations with these models due to using of many adjustable
parameters or mixing rules that they sometimes need a sufficient
amount of data for calibration and validation purposes that makes
them computationally inefficient. In such cases, an artificial neural
network (ANN) can be a suitable alternative to model the different
thermodynamic properties. The relationship between the physical
and thermodynamic properties is highly nonlinear, and an artifi-
cial neural network (ANN) is an especially efficient algorithm to
approximate a certain function (such as density) by learning the
relationships between the input and output vectors [15].

Accordingly, ANN method can be an alternative tool to model the
different thermodynamic properties [16,17]. In the past decades,
ANNs have been intensively used in various fields. The major reason
for this rapid growth and diverse applications of neural networks
is their ability to virtually approximate any function in a stable and
efficient way.

In the previous studies, Tao–Mason equation of state TM EOS
[18] has been successfully extended to fluid and fluid mixtures
[19–22]. Besides, the applications of equation of state and artifi-
cial neural networks approaches [15,23] were studied to estimate
the properties of pure polymers. Generally, ANN is powerful and
successful method for complex non-linear systems due to unique
advantages such as high speed, simplicity and large capacity which
reduce engineering attempt. In recent years, ANN modeling has
been successfully used for prediction of thermophysical properties
of pure and mixture fluids [24–27].

This research focus on the capability of both TM EOS and ANN
to estimate of thermodynamic properties of liquid alkali metals
and their alloys in different temperatures, pressures and mole frac-
tions. Finally, the efficiency of these approaches is compared with
experimental data and other equations of state.

2. Theory

2.1. Tao–Mason equation of state

In most cases, the common equations of state are based on the
van der Waals family of cubic equations, the extended family of
virial equations, or equations based more closely on the results from
statistical mechanics and computer simulations [28–30]. The TM
EOS falls in the latter category. In 1994, Tao and Mason described a
perturbation correction term which affect on the attractive forces
and combined it with the ISM equation of state [31] to present an
improved equation of state (TM EOS) [18]. The TM EOS for pure
substances is as follow:
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where, ω is the Pitzer acentric factor, � is an adjustable parame-
ter, � is the number density, Tc is the critical temperature, kT has
usual meaning, B2 is the second virial coefficient,  ̨ is the scaling
parameter, and b is the effective van der Waals co-volume.

The TM EOS requires the usage of the second virial coefficient,
B2, along with the parameters ˛, and b. It should be mentioned that
if the intermolecular potential is not available, the knowledge of
experimental second virial coefficient data is sufficient to calculate

values of the other two  temperature-dependent parameters [18].
In this case, there are several correlation scheme, usually based on
the corresponding state principal that lead to the calculation of the
second virial coefficient.

Tao and Mason formulated ˛, and b in terms of the Boyle tem-
perature (TB) and the Boyle volume (vB).
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where the constant a1, a2, c1, c2 are −0.0648, 1.8067, 2.6038, 0.9726,
respectively.

In the absence of sufficient experimental data, the B2 values can
be calculated from the Tsonopolous correlation [32].
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To achieve the higher accuracy, a corresponding state correla-
tion was  investigated in order to TM EOS could be applied to alkali
metals and their alloys. In this respect, the following correlation
equation for B2 using new scaling parameters (such as tempera-
ture and molar density at the boiling point) has been developed.
The resulting correlation for second virial coefficient is presented
as follow:
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where �bp and Tbp are density and temperature at boiling point.
Tao and Mason observation show that the dimensionless quan-

tities ˛/�B and b/�B as almost universal functions of the reduced
temperature (T/TB) can be calculated from the exponential formu-
las based on a LJ(12-6) model potential [18]. At this point the scale
factors (TB and �B) are the Boyle temperature and Boyle volume,
which can be expressed in terms of the boiling point parameters.
The empirical equations given in Ref. [18] for ˛/�B and b/�B as a
function of T/TB can be rescaled by Tbp and �bp, temperature and
density in boiling point, instead of TB and �B as Eslami [33].
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where the constants a1, a2, c1, c2 are −0.0860, 2.3988, 0.5624,
1.4267, respectively. Therefore, known value of the boiling point
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