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a  b  s  t  r  a  c  t

Two-dimensional  systems,  especially  systems  of  hard disks,  have  been  studied  intensively  during  the last
years both  by  simulation  methods  and  theoretically;  modified  density  functional  theory  has  been  applied
most  often.  Recently,  we have  proposed  an  improved  expression  for  the  residual  Helmholtz  energy,  �A,  of
the mixtures  of 2D  convex  figures,  which  makes  it  possible  to develop  another,  more  simple  “geometric”
method.  By  differentiating  �A  with  respect  to the number  of  particles  of  type  j, the  chemical  potential  ��j

might  be  obtained  and  consequently  the  logarithm  of  the  radial  distribution  function  expressed  in  terms
of ��k of  the  considered  pair  of  particles  and  the  corresponding  combined  figure.  The  resulting  equation
is very  simple,  only  two  geometric  quantities  –  figure  areas  and  mean  curvature  integrals  (mean  radii)
are to be evaluated.  The  used  method  is extremely  simple  and  yields  accurate  prediction  of  the  radial
distribution  functions  of  both  the  one-  and  multi-component  systems  in the  most  important  interval  of
distances.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In the last decade we have witnessed renewed interest in the
two-dimensional (2D) systems of hard disks, ellipses and two-
dimensional Lennard–Jones fluids [1–8]. This interest is connected
with the studies of adsorption, catalysis, behavior of colloids and
planar nano-systems by statistical thermodynamic methods. To
this end, simulation data were obtained for the simplest models of
such systems, i.e. systems with hard body repulsions [7–16]. Quite
often the modification of the density functional theory has been
applied [8–15] to predict the structure of these systems via radial
distribution function or the surface density profile.

In the recent paper [17] we dealt with the equation of state of
the 2D convex figures (including hard disks), derived from the self-
consistent-like expression [18] for the residual Helmholtz energy,
�A. The corresponding equation of state is valid for all the convex
figures, and includes – besides of the 2D non-sphericity factor –
only one constant (adjusted to the virial coefficients); it predicts
accurately the behavior of the pure hard disks and their mixtures
up to the highest densities. Predictions agree fairly well with results
from many-constant equations of state for disks.

Our knowledge of the equation for the residual Helmholtz func-
tion for the whole family of convex figures makes it possible to
derive an expression for the residual chemical potential of different
convex figures including hard disks. By applying Meeron–Siegert
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relation [19] (see also [20–22]) the expression for the 2D radial
distribution function can be formulated, in which – besides of the
pair of particles we  consider the “enlarged combining figure” (the
geometric quantities of which are tractable via expressions of the
convex figures). The resulting expression for the distribution func-
tion, g, possesses the form corresponding to the three-dimensional
case [23], however in terms of only two  geometric quantities –
difference in areas, �S  and difference in the 2D mean curvature
integral (divided by 2�). These differences are so far well known
only for the interval of distances of the pair of considered particles
r12 ∈ (0, 2); this fact limits the range of our present results.

2. Theory

In the recent paper [17] we  have proposed an accurate equation
of state for two-dimensional hard disks, two-dimensional prolate
sphero-cylinders, ellipses and other convex figures. The equation
for the residual Helmholtz energy, �A, reads as

�A

NAkT
= − ln(1 − �) + ��(1 + c�)

(1 − �)
(1)

where NA stands for the Avogadro number, k denotes Boltzmann
constant, T – temperature, � – packing fraction and c possesses
value �/14; � is the 2D non-sphericity (non-circular) factor [23], � =

�
(∑

xiRi

)2
/
∑

xiSi and Ri, Si denote “mean radius” and area of the
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Fig. 1. Geometry of the combined figure (CF) of the 2D hard disks (a) for pure fluid
with x = r12/�, rq = r1 = �/2; � – characteristic angle, (b) for the i–j pair in a mixture of
hard disks; �i , ˛i – characteristic angles (the latter determined by the intersection
of  the probe circle with the site-site connecting line.

ith figure. (For pure hard disks � = 1.) The corresponding equation
of state of the form

P

	kT
= 1

(1 − �)
+ ��[1 + �(�/7 − �2/14)]

(1 − �)2
(2)

has proved [17] to describe the state behavior of hard disks in the
broad interval of surface densities and that of other convex figures
in the isotropic phase.

By differentiation of �A  with respect to number of molecules
of the j-type, Nj, one obtains the residual chemical potential, ��j.
Thus for ��j we have (cf. [19–23])

��j

kT
= − ln(1 − �) + z(2�R∗

j + S∗
j )

+ �z2[S∗
j (1 + c��) + c�(1 − �)(4R∗

j − 1)] (3)

where z = �/(1 − �) and R∗
j
, S∗

j
are the dimensionless quantities,

X∗
j = Xj∑

ixiXi
(4)

Similarly as in the three-dimensional case, the expression for the
distribution function, g, in terms of the chemical potentials of par-
ticles i, j and that of the combined figure, CF,  holds true

ln gij = ˇ��i + ˇ��j − ˇ��CF (5)

where  ̌ = 1/kT.  In the case of 2D disks, the combined figure (for
shorter distances x = rij/�) is given by two disks and area determined
by the probe circle with diameter, q, see Fig. 1a). After substitution
from Eqs. (3) and (5) one has

ln gij = − ln(1 − �) + z(2��R∗ + �S∗)

+ �z2[�S∗(1 + c��) + c�(1 − �)(4�R∗
j − 1)] (6)

Here

�R∗ =
(�R∗

i
+ �R∗

j
− �R∗

CF )∑
xiRi

�S∗ =
(�S∗

i
+ �S∗

j
− �S∗

CF )∑
xiSi

(7)

2.1. Pure hard disks

In the case of the pure hard disks, the diameter of the probe
circle, q, is taken to be equal to that of the studied hard disk, i.e.

q = p = 1, and the reduced quantities – R* = 2Ri/� and S* = 4Si/(��2)
possess values R* = S* = 1. For values of x <

√
3 the quantities of the

combined figure are

R∗
CF =

[
p + 2(p + q)�

�

]
= 1 + 4�

�
(8)

S∗
CF = p2 + 2(p2 − q2)�

�
+ 2(p  + q)2 cos(�) sin(�)

�

= 1 +
(

8
�

)
cos(�) sin(�) (9)

where the expression for R∗
CF follows from differentiation of

S∗
CF with respect to p and (− q); � is the characteristic angle,

� = arcsin (x/2). Then,

�R∗ = 1 − 4�

�
, �S∗ = 1 −

(
8
�

)
cos(�) sin(�) (10)

For the reduced distances x ∈ (
√

3, 2.0) we  have

R∗
CF = 1 + 4�

�
− 2q˛

�
+ q sin(˛)

(2�)

S∗
CF = 1 +

(
8
�

)
cos(�) sin(�) + 2q2˛

�

and for x > 2.0 we take value g = 1. (The last term of the expression
for R∗

CF has a slightly empirical character and is not considered in
the case of mixtures.)

2.2. Mixtures of hard disks

Firstly we  will consider a binary mixture of 2D hard disks with
the diameter ratio p = �2/� (� = �1 = 1), mole fraction x1 and packing
fraction � = 	

∑
xiSi, where 	 denotes the surface density. If p1 = 1

and p2 = p and

q =
∑

xip
2
i∑

xipi
(11)

then we write for the combined figure of the pair i–j (see Fig. 1b)

Rij =
(

1
2

)∑
k=i,j

[
pk + 2(pk + q)�k

�
− 2q˛k

�

]
(12)

and

Sij =
(

1
2

)∑
k=i,j

[
p2

k + 2(p2
k

− q2)�k

�

+
(

2
�

)
(pk + q)2 cos(�k) sin(�k) + 2q2˛k

�

]
(13)

Here �k and ˛k denote characteristic angles of the part of the com-
bined figure, corresponding to the k-disk with R∗

k
= pk and S∗

k
= p2

k
.

Angle ˛k is related to �k via the expression

(pk + q) cos(�k) = q cos(˛k) (14)

Then

�R∗
ij = 1

(2Rs)

∑
k=1,2

[
pk − (pk + q)

(
2�k

�

)
+ q

(
2˛k

�

)]
(15)

�S∗
ij = 1

(2Ss)

∑
k=1,2

[
p2

k − 2(p2
k − q2)

(
�k

�

)

−
(

2
�

)
(pk + q)2 cos(�k) sin(�k) − q2

(
˛k

�

)]
(16)
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