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a  b  s  t  r  a  c  t

Rachford–Rice  iterations  are  widely  used  in  equation-of-state  (EOS)  flash  calculations  to determine  phase
equilibrium  compositions  from  constant  equilibrium  ratios  (K-values).  The  method,  however,  can be
slow to  converge  or may  not  converge  at all  for cases  where  at  least  one  overall  composition  is zero  or
negative.  Having  a robust  method  for  flash  calculations  in  these  special  cases  is important  in calculating
the  minimum  miscibility  pressure  (MMP)  using  method  of  characteristics  (MOC).

This  paper  presents  a  simple,  fast,  and  robust  alternative  to  Rachford–Rice  and  similar  methods  in  flash
calculations,  whether  overall  compositions  are  positive,  zero,  or negative.  The  new  objective  function  has
two fewer  asymptotes  compared  to  Rachford–Rice  and  is  based  on  solving  for one of  the  equilibrium  phase
mole fractions,  typically  the  lightest  component.

Results  with  the  new objective  function  demonstrate  that  rapid  convergence  using Newton–Raphson
(NR)  iterations  is  assured  because  the  correct  solution  is determined  within  a  small  range  (window).  In
that  window,  no  poles  exist  no matter  the  overall  composition  and  the  objective  function  is often  nearly
linear.  Improved  linearity  of  the  objective  function  contributes  to  increased  convergence  speed  even near
critical points.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Compositional simulation is often required to model the com-
plex interaction of flow with phase behavior when gas is injected
into oil reservoirs. This is especially true for miscible or nearly mis-
cible floods where black-oil simulation is not accurate.

A significant disadvantage of compositional simulation, how-
ever, is that flash calculations with cubic EOS are computational
intensive and may  not be reliable near critical regions. Research has
shown that EOS flash calculations can occupy 50–70% of total com-
putational time in compositional simulations [1].  Repeated flash
calculations with cubic EOS are also needed in other problems such
as multiphase flow in pipelines [2] and determination of minimum
miscible pressure (MMP)  or minimum miscible enrichment (MME)
from analytical methods [3,4]. Analytical methods for the determi-
nation of MMP  or MME  often require flash calculations in negative
composition space or where one overall composition is zero.
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There are two  approaches to calculate the equilibrium com-
positions and phase molar fractions from a cubic EOS: (1) direct
minimization of the mixture molar Gibbs energy [5–7] or (2) chem-
ical potential equality (in terms of fugacity). The Rachford–Rice
method [8] is used extensively as a subroutine in flash calcula-
tions in conventional compositional simulation. Rachford and Rice
[8] derived a simple objective function assuming constant K-values
to calculate phase compositions for two  equilibrium phases. They
used an iterative bisection method where the phase molar fraction,
either liquid or vapor, is constrained to lie in the range from 0.0 to
1.0. Equilibrium phase compositions are then calculated by mass
balance from the converged phase molar fraction and the overall
compositions. Their method works well for the overall composi-
tion that lies inside the two-phase region. However, their objective
function has many poles and roots and is often very nonlinear.
Moreover, when the overall composition lies outside the two-phase
zone, the correct root is not between 0.0 and 1.0. Li and Nghiem
[9] extended the Rachford–Rice method to negative flash calcula-
tions, where the overall composition can be outside the two-phase
zone so that the solution for phase molar fractions is less than
0.0 or greater than 1.0. They also improved the speed of conver-
gence by using Newton–Raphson (NR) iterations. Because of the
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Nomenclature

a attraction parameter for EOS (psia ft3/lbm mol)
b repulsion parameter for EOS (ft3/lb mol)
f̂ component fugacities (psia)
k binary interaction parameter (dim.)
K K-value (dim.)
L liquid mole fraction (dim.)
NC number of components
NP number of phases
P reservoir pressure (psia)
R gas constant (psia ft3/lb-mol R)
T temperature (◦F)
V vapor mole fraction (dim.)
V̄ molar volume (ft3/lb mol)
x liquid phase molar composition (dim.)
y vapor phase molar composition (dim.)
z overall composition (dim.)

 ̨ transformation parameter (dim.)
�̂ component fugacity coefficient (dim.)

Superscripts and subscripts
* transformed composition
i,j species index
j,k phase index
m mixture
max  upper boundary of the investigation range
min  lower boundary of the investigation range
ref reference component

multiplicity of poles and roots, their method could easily diverge
from the correct root.

Whitson and Michelsen [10] made a significant improvement
in the robustness of the negative flash calculation by specifying
a range or window in which the correct root of the phase molar
fraction should lie. Furthermore, they showed that there are no
poles within that range as long as overall compositions are positive.
Because of the nonlinearity of the Rachford–Rice objective function,
however, convergence could still be slow. For the special case when
one or more overall compositions are negative or zero, the correct
root does not lie within their proposed window so that convergence
is not guaranteed or in some cases is not even possible.

Several authors [11–14] derived a new objective function
by multiplying the Rachford–Rice function by its denominators
(poles). This approach makes the new objective function more con-
tinuous than the Rachford–Rice objective function. However, the
new function is more computationally intensive and nonlinear than
the original Rachford–Rice function. Thus, this approach offered no
significant advantages over the Rachford–Rice function with the
Whitson and Michelsen window.

Leibovici and Neoschil [15] continued this approach, by multi-
plying the Rachford–Rice objective function by the denominators
of the poles corresponding to the lightest and heaviest components.
They gave a smaller window for the phase mole fraction than that of
Whitson and Michelsen and showed improvement in average com-
putational time for the flash calculations considered. Their method,
however, still has problems with nonlinearity of the objective func-
tion, especially when the lightest and heaviest components are
present in small amounts and the overall composition is close to
either the bubble-point or dew-point curves. Their method also
suffers from increased computational cost per iteration and in most
cases of practical interest will not be faster than Rachford–Rice. Last,
their method cannot be extended to equilibrium calculations with
more than two phases [16], and is therefore not a general approach.

Wang and Orr [17–19] focused on solving the negative flash
problem for overall compositions outside of positive composi-
tion space where at least one overall composition is negative (or
zero). Their goal was  primarily to improve convergence for overall
compositions outside of positive composition space for MMP  cal-
culations using the method of characteristics. They initially used
a system of equations to solve for the liquid phase compositions,
instead of phase saturations. This approach, however, is inefficient,
because it requires solution of a system of equations and can con-
verge to a root where one or more liquid equilibrium compositions
are negative. Wang [19] modified the procedure using only a single
function, and solved for only one liquid equilibrium phase composi-
tion, the lightest component x1. This approach made the calculation
faster, and potentially more robust, but it introduced a trivial solu-
tion at x1 = 0.

Juanes [20,21] recently presented a method derived from Wang
and Orr’s [18] original set of equations, but where he parameterized
the bubble-point curve resulting in a set of NC − 2 quadratic equa-
tions. Similar to Wang and Orr’s method, his method is not efficient
and could converge to a false tie-line (one with negative equi-
librium compositions). An important conclusion of his research,
however, is that at most two roots (or two tie lines) exist in the
solution domain for the case when overall compositions can be
negative. This has important implications to the uniqueness of the
method of characteristics solution for the estimation of miscibil-
ity pressure in petroleum gas floods (see for example uniqueness
questions raised in Yuan and Johns [4]).

In this paper, we derive a new objective function that is often
nearly linear in terms of a selected equilibrium liquid phase mole
fraction. We  then derive a small window in which the physical
root(s) must lie. Several example calculations are performed and
the results are compared to the Rachford–Rice, Wang and Orr, and
Leibovici and Neoschil methods. The Peng–Robinson [22] EOS is
also used in example calculations to demonstrate that the function
can converge very near the critical region.

2. Conventional flash calculation by cubic EOS

For an equilibrium flash calculation, the pressure, temperature,
and overall mole fractions are specified and the amounts of the
phases and their compositions that form at equilibrium are calcu-
lated. An expression for the fugacities of each component in each
phase is needed to calculate phase equilibrium. At equilibrium,

f̂ j
i

= f̂ k
i , i = 1, ..., NC ; j, k = 1, ..., NP (1)

where f̂i is the fugacity of a component, NP is the number of phases,
and NC is the number of components. For vapor–liquid equilib-
rium, Eq. (1) can be rewritten in terms of the component fugacity
coefficients �̂i as,

xiP�̂L
i = yiP�̂V

i , i = 1, . . . , NC (2)

where P is the reservoir pressure, xi is the liquid equilibrium phase
composition, and yi is the vapor equilibrium phase composition.

The general procedure for a two-phase flash calculation is well-
documented in the literature and is outlined briefly in Appendix
D.

3. Rachford–Rice iterations

Rachford–Rice iterations are typically used to determine the
phase compositions and amounts as outlined in Step 3. The objec-
tive function for this method is easily derived from the definition
of K-values for two-phase equilibrium:

yi = Kixi, i = 1, . . . , NC (3)
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