Contents lists available at SciVerse ScienceDirect ### Steroids journal homepage: www.elsevier.com/locate/steroids # 3D models of human ERα and ERβ complexed with 5-androsten-3β,17β-diol Michael E. Baker a,*, Kayla Y. Uh b, Charlie Chandsawangbhuwana c - ^a Department of Medicine, 0693 University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0693, USA - ^b Department of Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0693, USA - ^c Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0693, USA #### ARTICLE INFO Article history: Received 13 April 2012 Received in revised form 12 July 2012 Accepted 26 July 2012 Available online 13 August 2012 Keywords: Δ^5 -Androstenediol Brain microglia Multiple sclerosis Estrogen receptor β #### ABSTRACT Recently, binding of 5-androsten-3 β ,17 β -diol (Δ^5 -androstenediol) to human estrogen receptor-beta (ER β) was found to repress microglia-mediated inflammation, which is associated with various neurodegenerative diseases, such as multiple sclerosis. In contrast, binding of estradiol to ER β resulted in little or no repression of microglia-mediated inflammation. Binding of Δ^5 -androstenediol to ER β , as well as to ER α , is unexpected because unlike estradiol, Δ^5 -androstenediol has a saturated A ring and a C19 methyl group. To begin to elucidate the interaction of Δ^5 -androstenediol with both ER β , we constructed 3D models of Δ^5 -androstenediol with human ER α and ER β for comparison with the crystal structures of estradiol in ER α and ER β . Conformational flexibility in human ER α and ER β accommodates the C19 methyl on Δ^5 -androstenediol. This conformational flexibility may be relevant for binding of other Δ^5 -steroids with C19 methyl substituents, such as 25-hydroxycholesterol and 27-hydroxycholesterol, to ER β . © 2012 Elsevier Inc. All rights reserved. #### 1. Introduction The physiological actions of estradiol (E2) and other vertebrate steroids, e.g. aldosterone, cortisol, progesterone and testosterone, are mediated by nuclear receptors, a large and diverse group of transcription factors that arose in multicellular animals [1-7]. In mammals, E2 acts through two estrogen receptors (ERs), ERα and ERβ [8], which have about 60% amino acid identity in their estrogen-binding domain. Although E2 is the canonical ligand for these two ERs, other ligands, such as 5-androsten-3 β ,17 β -diol (Δ ⁵androstenediol), and 5α -androstane- 3β , 17β -diol (5α -androstanediol) have nM affinity for ER α and ER β [8,9], which is surprising because both ligands have important structural differences with E2 (Fig. 1). First, Δ^5 -androstenediol and 5α -androstanediol lack a phenolic A ring that is found in E2. The saturated A ring and its 3β hydroxyl on Δ^5 -androstenediol and 5α -androstanediol have different chemical properties than the phenolic A ring in E2. Second, both Δ^5 -androstenediol and 5α -androstanediol contain a C19 methyl group, which is absent in E2. The C19 methyl group would be expected to interfere with a close packing of the A ring on E2 in ER α and ER β [5,10–12]. In addition, Δ ⁵-androstenediol has an unsaturated C5-C6 bond that is lacking in E2 and 5α androstanediol. Nevertheless, there is evidence that transcriptional activation of ER β by 5α -androstanediol and Δ^5 -androstenediol is physiologically important [13–15]. Interest in Δ^5 -androstenediol has increased due to the recent report [15] that activation of human ERβ in microglia by Δ^5 -androstenediol, which is synthesized in brain microglia [16,17], inhibits inflammation by recruitment of the corepressor C-terminal binding protein (CtBP) to the steroid–ER_β complex. This complex binds to activation protein-1 (AP-1) dependent promoters, inhibiting inflammation. Inflammation mediated by microglia is important in a variety of diseases [18,19] including multiple sclerosis [20–22]. Unlike Δ^5 -androstenediol, E2 is not a potent inducer of the ERB/CtBP pathway for repression of inflammation in brain microglia, and 5α -androstanediol has weak activity [15]. These differences motivated us to construct 3D models of human ER α and ERβ complexed with Δ^5 -androstenediol for comparison with the crystal structures of E2 in both ERs, with the goal of understanding how, despite the presence of a C19 methyl group in Δ^5 -androstenediol, it binds to human ER α and ER β . Our 3D models indicate that there is flexibility in $\text{ER}\alpha$ and $\text{ER}\beta,$ which allows conformational changes that provide stabilizing van der Waals contacts with the C19-methyl group on Δ^5 -androstenediol. #### 2. Methods 2.1. Construction of 3D model of Δ^5 -androstenediol in human ER β Previously we used the Biopolymer and Discover 3 options in Insight II to construct 3D models of the steroid-binding domain of human ER α with Δ^5 -androstenediol [23]. An obstacle to constructing a 3D model of Δ^5 -androstenediol in ER β is the lack of complete crystal structures of human ER β in the Protein Data Bank (PDB). The one crystal structure of human ER β with E2 (PDB: 3OLS) ^{*} Corresponding author. Tel.: +1 858 534 8317; fax: +1 858 822 0873. E-mail address: mbaker@ucsd.edu (M.E. Baker). **Fig. 1.** Structures of E2, Δ^5 -androstenediol, 5α -androstanediol and 27-hydroxycholesterol. Despite differences in their structures, all of these chemicals and 25-hydroxycholesterol bind to human ERα and ERβ [8,9,47–49]. E2 has an aromatic A ring and a phenolic hydroxyl at C3. Δ^5 -Androstenediol, 5α -androstanediol, 27-hydroxycholesterol and 25-hydroxycholesterol have a saturated A ring, a 3β-hydroxyl, as well as a C19 methyl substituent. Δ^5 -Androstenediol, 25-hydroxycholesterol and 27-hydroxycholesterol also have an unsaturated bond between C5 and C6. Although Δ^5 -androstenediol and 5α -androstanediol have similar affinities for ERβ, it is Δ^5 -androstenediol that forms the most biologically active complex with ERβ and CtBP to bind to AP-1-dependent promoters and inhibit inflammation in brain microglia [15]. [24] lacks coordinates for five amino acids corresponding to residues 416-420. Moreover, the coordinates for these residues are not found in other ERβ structures in the PDB. Alignment of the ligand-binding domains on human ER α and ER β reveals that these five amino acids are in a loop that does not directly contact E2 (Fig. 2). Nevertheless, their absence in 3OLS could influence the conformation of Δ^5 -androstenediol in ER β . Thus, for the analysis of Δ^5 -androstenediol in human ER β , we first constructed a full 3D model of human ERB using the Homology option in Insight II with 3OLS and human ER α (PDB: 1G50) [25] as templates. The structure of 1G50 is similar to that of crystallized ERs. The root mean square deviation (RMSD) for the Cα atoms between 1G50 and 1ERE [10] and 1GWR [26] is 0.42 and 0.53 Å, respectively. The RMSD between 1G50 and 3OLS is 1.0 Å. This indicates that 1G50 is a good template for modeling residues 416-420 in human ERβ. A PDB file of the complete ERβ with E2 was refined with Discover 3 with the CVFF force field and a distant dependent dielectric constant of 2 for 50 iterations. We superimposed the 3D structure of ERB with E2 (PDB: 3OLS) and the energy minimized 3D model of ERβ with E2, and found that the two ERβs had an RMSD of 0.3 Å between their $C\alpha$ atoms. Then the Biopolymer option in Insight II was used to convert E2 to Δ^5 -androstenediol in ER β and ER α (1G50). The 3D models of ER α and ER β with Δ^5 -androstenediol were refined through energy minimization with Discover 3 for 10,000 iterations using the CVFF force field, with a distant dependent dielectric constant of 2. #### 2.2. Docking of Δ^5 -androstenediol in human ER α and human ER β AutoDock 4 [27,28] was used to dock Δ^5 -androstenediol into human ER α and ER β with the grid centered over the estrogen binding site in ER α and ER β . AutoDock 4 was run using the Lamarckian Genetic Algorithm with 250 individuals and 25 million energy evaluations. The 100 poses with the lowest energy for Δ^5 -androstenediol in human ER α and ER β were collected for analysis. #### 3. Results #### 3.1. Docking of Δ^5 -androstenediol to ER α and ER β Our previous analysis assumed that the A, B, C and D rings of Δ^5 -androstenediol and E2 had the same overall orientation in ER α [23]. However, it is possible that Δ^5 -androstenediol has different orientations in ER α and ER β , as has been found for some ligands [29,30]. That is, Δ^5 -androstenediol may flip so that the D ring occupies the region in either ER α or ER β that is occupied by the A ring of E2, in which case Δ^5 -androstenediol assumes an orientation in ERα and ERβ that is opposite to that of E2. To investigate this and other possibilities, we used AutoDock 4 [27,28] to dock Δ^5 -androstenediol into ER α and ER β . The lowest binding energy of Δ^5 -androstenediol in ER α was -10.8 kcal/mol (Ki = 12.6 nM) and in ER β was -11.4 kcal/mol (Ki = 4.8 nM). This docking preference of Δ^5 -androstenediol for human ER β compared to ER α is in agreement with binding studies of Kuiper et al. [8]. The orientation of Δ^5 -androstenediol in human ER β was the same as E2 in all 100 poses, and Δ^5 -androstenediol had 76 poses in ER α that were similar to E2 in ER α . In the other 24 poses for Δ^5 -androstenediol in ER α , the binding energy was -10.3 kcal/mol (Ki = 29 nM). In these poses, compared to E2, the C3 and C17 positions are reversed and they flip so that both hydroxyls on Δ^5 -androstenediol have a different configuration, which does not favor binding to ERa (Supplement Fig. 1). Based on the docking data, we reasoned that the overall orientation of Δ^5 -androstenediol upon binding to ER α and ER β corresponds to that of E2. #### 3.2. 3D model of Δ^5 -androstenediol in human ER α Fig. 2A and B shows Δ^5 -androstenediol and E2, respectively, in human ER α . As described previously [23], Δ^5 -androstenediol has stabilizing contacts with Glu-353, Arg-394, Phe-404 and His-524 in human ER α (Fig. 3A) that are similar to that of E2 with human ER α [10,26,31,32] (Fig. 3B). In addition, Met-343 and Met-421 stabilize the D ring in Δ^5 -androstenediol (Fig. 3A) and E2 (Fig. 3B), ## Download English Version: # https://daneshyari.com/en/article/2028195 Download Persian Version: https://daneshyari.com/article/2028195 <u>Daneshyari.com</u>