

Contents lists available at ScienceDirect

Steroids

Ximaosteroids A–D, new steroids from the Hainan soft coral Scleronephthya sp.

Xiao-Hong Yan, Hai-Li Liu, Yue-Wei Guo*

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhang Jiang High-Tech Park, Shanghai, 201203, PR China

ARTICLE INFO

Article history:
Received 7 July 2009
Received in revised form 18 August 2009
Accepted 19 August 2009
Available online 26 August 2009

Keywords: Soft coral Scleronephthya sp. Tetrahydrofuran steroid Pregnane steroid

ABSTRACT

One novel uncommon steroid, ximaosteroid A (1), possessing an unusual tetrahydrofuran moiety and three new pregnane steroids, ximaosteroids B–D (2–4), were isolated from the Hainan soft coral *Scleronephthya* sp. Their structures were elucidated on the basis of detailed spectroscopic (IR, MS, and 2D NMR) analysis and by comparison with those reported in the literature.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Soft corals are recognized as very prolific sources of novel bioactive substances [1]. Numerous secondary metabolites spanning a wide range of structure class and various biological activities were isolated from different species of soft corals such as genera Sarcophyton, Lobophytum, Sinularia, etc. [2-4]. However, a literature survey revealed that chemical studies on the genus Scleronephthya (order Alcyonacea, family Nephtheidae) were relatively rare and only a few metabolites mainly pregnane steroids have been reported to data [5-8]. In the course of our ongoing program towards the isolation of biologically active substances from Chinese marine organisms [9–13], we have recently examined an unknown species of the Scleronephthya soft coral, collected off the coast of Ximao Island, Hainan Province, China, resulting in the isolation of a series of steroids [14]. Our continuous studies on the minor constituents of the same collection led to the isolation of four new steroids, named ximaosteroids A-D(1-4)(Fig. 1). The present paper deals with the isolation and structural elucidation of these new compounds.

2. Experimental

2.1. General methods

Optical rotations were measured on a PerkinElmer polarimeter 341 at the sodium D-line, cell length 100 mm. UV spectra were recorded on a 756 CRT spectrophotometer. IR spectra were recorded on a Nicolet-Magna FT-IR 750 spectrometer, peaks are reported in cm⁻¹. The NMR spectra were measured on a Bruker Avance-500 spectrometer (500 MHz for ¹H and 125 MHz for ¹³C), using the residual CHCl₃ signal ($\delta_{\rm H}$ 7.26 ppm) as an internal standard for 1H NMR and CDCl $_3$ (δ_C 77.0 ppm) for ^{13}C NMR. Chemical shifts are expressed in δ (ppm) and coupling constants (*J*) in Hz. ¹H and ¹³C NMR assignments were supported by ¹H-¹H COSY, HSOC, HMBC and ROESY experiments. EIMS and HREIMS data were obtained on a Finnigan-MAT-95 mass spectrometer. ESIMS and HRESIMS spectra were recorded on a O-TOF Micro-LC-MS-MS mass spectrometer. Reversed-phase HPLC (Agilent 1100 series liquid chromatography using a VWD G1314A detector at 210 nm and a semi-preparative ZORBAX ODS (5 μm, 250 mm × 9.4 mm (i.d.)) column) was also employed. Commercial Silica gel (Qing Dao Hai Yang Chemical Group Co., 200-300 and 400-600 mesh) was used for column chromatography (CC), and precoated silica gel plates (Yan Tai Zi Fu Chemical Group Co., G60 F-254) were used for analytical TLC.

2.2. Animal material

The soft coral *Scleronephthya* sp. was collected off Ximao Island, Hainan Province, China, in December 2001, at a depth of $-20\,\mathrm{m}$ and identified by Professor R.-L. Zhou of South China Sea Institute

^{*} Corresponding author. Tel.: +86 21 50805813; fax: +86 21 50805813. E-mail address: ywguo@mail.shcnc.ac.cn (Y.-W. Guo).

1 2 C1-C2 saturated 3 C1-C2 unsaturated 4
$$R_1 = Ac$$
, $R_2 = H$ 8 $R_1 = H$, $R_2 = Ac$ 5 $R_1 = R_2 = H$ C4-C5 saturated 6 $R_1 = R_2 = OH$ C4-C5 unsaturated 7

Fig. 1. Structures of 1-8.

of Oceanology, Chinese Academy of Sciences. A voucher specimen (HN-54) is available for inspection at Shanghai Institute of Materia Medica, CAS.

2.3. Extraction and isolation

The frozen animals (150 g dried weight) were cut into pieces and exhaustively extracted with acetone at room temperature (1.5 L $3\times$). The organic extract was evaporated to give a residue, which was partitioned between Et₂O and H₂O. The Et₂O solution was concentrated under reduced pressure to give a dark green residue (2.8 g), which was fractionated by gradient silica gel CC (0-100% acetone in petroleum ether), yielding 10 fractions. Faction 2 was chromatographed on a silica gel column (400-600 mesh, petroleum ether/Et₂O, 95:5) to afford 7 (2.1 mg). Faction 3 was firstly subjected to a silica gel CC (400-600 mesh, petroleum ether/Et₂O, 90:10), and then RP-HPLC [MeOH/H2O (3:1), 2.0 mL/min] to give compounds **2** (1.6 mg) and **3** (1.3 mg). Fraction 5 gave compound **1** (1.3 mg) after CC on silica gel (400–600 mesh, petroleum ether/Et₂O, 70:30). Fraction 6 was purified by silica gel CC (400–600 mesh, petroleum ether/Et₂O, 65:35), followed by CC on Sephadex LH-20 (petroleum ether/CHCl₃/MeOH, 2:1:1) to yield compound 4 (1.4 mg).

2.3.1. Ximaosteroid A (1) Colorless oil; $[\alpha]_D^{20}$ +12.0 (c 0.13, CHCl₃); UV (MeOH) λ_{max} (log ε) 223 (3.30) nm; IR (KBr) ν_{max} 2926, 2868, 1734, 1682, 1464, 1240, 1047, 976, 779 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 125 MHz) data, see Table 1; EIMS 70 eV m/z (rel. int.%) 396 $[M]^+$ (28), 381 (100), 339 (51), 270 (23); HREIMS m/z 396.3012 $[M]^+$ (calcd for $C_{27}H_{40}O_2$, 396.2995).

2.3.2. Ximaosteroid B (2)

Colorless oil; $[\alpha]_D^{20}$ +33.0 (c 0.16, CHCl₃); IR (KBr) $\nu_{\rm max}$ 3448, 2949, 2854, 1736, 1650, 1450, 1375, 1246, 1030, 990, 910, $608\,cm^{-1}$; ^{1}H NMR (CDCl₃, $500\,MHz$) and ^{13}C NMR (CDCl₃, 125 MHz) data, see Tables 2 and 3; EIMS 70 eV m/z (rel. int.%)

Table 1 ¹H and ¹³C NMR data of ximaosteroid A (1)^a and ¹³C NMR data of 5 and 6.

Position	1		5	6
	$\delta_{\rm H}$ mult. (J in Hz)	δ_{C} mult.	δ_{C} mult.	$\delta_{\rm C}$ mult.
1	7.11 d (10.3)	158.2 d	158.7 d	156.0 d
2	5.86 d (10.3)	127.5 d	127.4 d	127.6 d
3	-	200.0 s	200.4 s	186.3 s
4α	2.23 dd (17.6, 3.3)	41.0 t	41.1 t	124.0 d
4β	2.37 dd (17.6, 14.3)			
5	1.91 m	44.3 d	44.4 d	169.0 s
6	1.42 m	27.5 t	28.7 t	33.0 t
7	1.82 m	31.6 t	31.4 t	34.0 t
8	1.29 m	38.0 d	35.7 d	35.2 d
9	1.01 m	49.3 d	50.1 d	55.5 d
10	-	38.9 s	39.1 s	43.0 s
11α	1.84 m	23.2 t	21.3 t	23.0 t
11β	1.05 m			
12α	2.14 m	37.4 t	39.7 t	34.5 t
12β	1.39 m			
13	-	42.5 s	42.7 s	47.5 s
14	1.21 m	55.7 d	56.5 d	53.0 d
15	1.88 m	26.1 t	24.2 t	23.8 t
16	1.56 m	26.3 t	27.7 t	24.0 t
17	2.01 m	55.8 d	56.0 d	59.0 d
18α	3.55 d (9.0)	72.3 t	12.4 q	59.0 q
18β	3.63 d (9.0)			
19	0.92 s	12.9 q	13.0 q	19.0 q
20	-	84.7 s	40.2 d	74.9 s
21	1.25 s	25.0 q	20.9 q	28.5 q
22	5.45 d (15.6)	138.1 d	138.0 d	139.0 d
23	5.57 dt (15.6, 7.2)	126.5 d	126.5 d	125.8 d
24	1.93 m	41.6 t	42.0 t	41.2 t
25	1.65 m	28.6 d	28.6 d	34.0 d
26	0.90 d (6.6)	22.5 q	22.4 q	22.3 q
27	0.91 d (6.6)	22.3 q	22.3 q	22.2 q

 $^{^{\}rm a}$ Spectra recorded at 500 MHz in CDCl3. Assignments were based on DEPT, $^{\rm 1}H$ – $^{\rm 1}H$ COSY, HMQC, and HMBC experiment.

Download English Version:

https://daneshyari.com/en/article/2028582

Download Persian Version:

https://daneshyari.com/article/2028582

Daneshyari.com