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a  b  s  t  r  a  c  t

The  molecular  structure  or  short  chain  branching  of  chemical  compounds  is known  to  have  a  strong
impact  on  their  thermodynamic  behaviour.  For  example  the vapour  pressure  of isomeric  alkanes  is
increased  with  branching,  but  also  the  behaviour  of  more  complex  species  and  mixtures  of  them  can
be quite  sensitive  to  molecular  architecture.  Usually,  thermodynamic  properties  like  equilibria  or  densi-
ties  are  modelled  by  the  use  of equations  of state,  of  which  the  physically  based  ones,  like  the  Statistical
Associating  Fluid  Theory  (SAFT)  family  have  become  popular  in the past  two  decades  due  to  their  abil-
ity  to accurately  describe  a  rich  variety  of  thermodynamic  properties.  However,  these  theories  are  not
capable  of  including  branching  effects  on an  a priori  basis.  Recent  advances  in the  application  of  lat-
tice  cluster  theory  have  shown  that  this  theory  is  capable  of  describing  isomeric  effects  for  pure  alkane
isomers,  namely  the  rising  vapour  pressures  with  stronger  branching.  The  description  of  these  effects
is extended  here  to  multi-component  systems,  while  retaining  the  simple  functional  form  of  a  series
expansion.  Moreover,  the original  theory  is  simplified  using  some  graph  invariants,  without  loosing  any
thermodynamic  information.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Today polymers play a crucial role in industrial and scientific applications ranging from the use of super absorbing polymers [1] (e.g. in
diapers) to the use of aerogels as dust collectors in the search for interstellar dust [2]. For processing and application purposes the knowledge
of the polymers’ thermo-physical properties is important. For example the solubility of the polymer with different molar masses in its
monomer is a key aspect of the production process since the reaction would stop if the polymer starts to demix with its monomer. This
does not have to be a negative aspect and can even be used to stop the polymerization at a certain molar mass [3], if the phase behaviour
is well known. However, the thermodynamic properties of the polymer depend strongly on its molecular weight (MW)  and architecture,
as well as its chemical composition.

Of these dependencies the MW-dependence has been addressed thoroughly by many approaches over several decades. These approaches
lately include physically based equations of state like the statistical associating fluid family (SAFT-family) [e.g. 4–10] (see Tan et al. [11] for a
recent review). Most of the SAFT versions, however, cannot predict the influence of molecular structure on the thermodynamic properties,
which is desirable for example when describing polyethylene solutions or blends, because usually in the polymerization process there
is a strong polydispersity with respect to MW,  as well as short-chain branching. The impact of short chain branching can be seen from
Fig. 1, where the cloud point of pressures of linear and branched polyethylene (PE) in ethylene at fixed temperature for polymers of similar
molecular weight is shown. The cloud point pressures reduce by about 40 MPa  for the branched polyethylene. Furthermore, novel materials
like dendritic or hyper-branched polymers show a strong impact of branching on physical properties [12–15]. Therefore SAFT versions
that can model branching have been developed [16–18] using the second order thermodynamic perturbation theory (TPT2) by Wertheim
[19–22]. These are limited due to the fact that they only allow tetramer units as branching points or treat pentamer units simply the same
as tetramer branching points. Also, with these theories, it was  not yet possible to model the vapour–liquid equilibrium (VLE) and lower
critical solution (LCST) behaviour with the same set of parameters for hyper-branched polymer solutions [17]. All these approaches use
the TPT2 approach and are thereby limited to local correlations between a maximum of three segments. A different approach is the use of
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Fig. 1. Experimental [33] cloud point pressures of linear polyethylene (squares) and branched polyethylene (triangles) of similar molecular weight (weight average molecular
weight  is about 54–55 kg/mol) in ethylene at T = 423.15 K over polymer mass fraction.

group contributions [9,23–31] where different groups have different sizes and interact through different interaction energies. This course
of action, however, demands the fit of these parameters to a large amount of data and cannot distinguish between different positions of
the group on the molecule. For a more detailed description of theories used in describing polymer solutions and blends please see Wolf
and Enders [32].

It is possible to take the MW-dependence and the architecture dependence into account by use of the lattice cluster theory (LCT)
developed by Freed and co-workers [34–51] taking into consideration local correlations of up to four monomer segments. This lattice
based, incompressible model was extended to account for pressure effects by Dudowicz and Freed [39] and was  recently simplified for
pure compounds, yielding the LCT equation of state [52] (LCT-EOS). LCT-EOS was  successfully used to model the vapour pressure differences
due to isomerism by Langenbach and Enders [52]. The reason for the simplification is that the original equations by Dudowicz and Freed
are quite unwieldy. A further analytical rearrangement, using some graph invariants derived by Nemirovsky et al. [44], resulted in a much
less complex expression for the free energy of binary compressible systems by Browarzik et al. [53], which was  successfully applied to the
calculation of binary high pressure LCST behaviour, as well as vapour–liquid and vapour–liquid–liquid phase behaviour of hyper-branched
polymer and solvent. The simplification to cases of one, two or three compounds is often done, if actual phase equilibrium calculations
with the LCT or LCT-EOS are performed [53–60], because it is possible to avoid numerical pitfalls this way. These pitfalls may  result from
the heavy summations in the original equations [39]. Sometimes, approximations, such as the incompressible, high molecular weight
or light branching limits are used in order to further simplify the original expressions of Freed and co-workers. For example, Arya and
Panagiotopoulos [61] examined the incompressible limit, comparing LCT to Monte Carlo simulations of linear and branched molecules.
Though taking into consideration the full theory up to second order [39], using also the corrections by Dudowicz et al. [62], Arya and
Panagiotopoulos [61] conclude that the architecture influence is not predicted to the full extent by LCT. This is partially due to their
choice of the lattice coordination number as z = 26 for a cubic lattice. In contrast to that, Browarzik et al. [63] find a strong influence of
architecture on the phase behaviour of polymers in accordance with experimental data of Kleintjens et al. [64] for incompressible solutions
of polyethylene in diphenyl ether using z = 6. The higher coordination number of Arya and Panagiotopoulos [61], the inverse of which is
one of the expansion variables, most probably reduces the influence of architecture on the free energy. This is expected, since in the infinite
coordination number limit, the Flory–Huggins theory [65,66] is recovered from LCT. Freed and Dudowicz [67] propose a limiting case,
where both the limit of incompressibility and the high molecular weight limit are taken. The limit of light branching is implied by the
calculation of geometrical coefficients from the number of branching points only, as proposed by Nemirovsky et al. [44]. Some other authors
derive semi-empirical expressions trying to mimic  the behaviour of LCT, but using simpler algebraic equations [e.g. 68,69]. However, even
though limiting cases and theories approximating LCT are useful to alleviate the complexity, a complete version, yet simplified to the fullest
possible extent without losing thermodynamic information is desirable.

This paper is concerned with the reasonable algebraic simplification of the compressible multi-component lattice cluster theory. In order
to allow multi-component systems, the reduced lattice interaction energies ε̃ij have to be contracted with their pure compound pendants
ε̃ii and ε̃jj into the exchange interaction energy �ε̃ij = ε̃ii + ε̃jj − 2ε̃ij yielding a clearer separation between the pure compound effects and
the effects of mixing. Furthermore, it is possible to reduce the number of combinatorial factors by use of the graph invariants of Nemirovsky
et al. [44]. Together, these simplifications lead to 26 contributions in the residual free energy of compressible multi-component systems,
which is a major simplification compared to the 102 original contributions by Dudowicz and Freed [39]. Hence, the new equation of state
is more suitable for engineering purposes. The new multi-component LCT-EOS is presented in this paper. Some example calculations are
shown and compared to experimental data.

2. Lattice cluster theory equation of state

The LCT derived by Freed and co-workers [34–51,70] is a lattice theory that enables the inclusion of structure directly into the equation
of state. However, the original form of the equations involves a massive amount of summations, which makes it prone to numerical error, if
used directly. Typically this problem is avoided by setting the number of compounds to one [43,52,59], two [e.g. 40,43,59] or three [56,58]
components and rearranging the terms. Recently Langenbach et al. [53] have shown that for the compressible case with two  components
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