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a  b  s  t  r  a  c  t

Fluid  behavior  in nanometric  cavities  and  in  bulk  phases  may  be  remarkably  different  but  there  is  a
dearth  of  simple  analytical  models  that  can  predict  such  difference  with  a single  set  of  parameters.  In this
work,  commonly  used  cubic  equations  of  state  are  extended  to  the  modeling  of fluids  confined  in  porous
media.  A  model  based  on  the Peng–Robinson  equation  of  state  is  used  to study  the  phase  equilibrium
of  pure  fluids  and  mixtures  confined  in  homogeneous  and  heterogeneous  porous  media.  The  problem  is
formulated  as a multiphase  equilibrium  calculation  because  each  kind  of  pore  in  a  heterogeneous  porous
media  has  its  own  confinement  effect  and may  contain  one  or more  phases  with  unique  properties.  The
specifications  are  the  temperature,  the  total  amount  of  each  fluid  component,  the volume  available  for
bulk phases,  and  the  total  volume  of each  kind  of pore,  so  that the equilibrium  condition  is  the  minimum
Helmholtz  energy.  The global  phase  stability  test  is  executed  to assess  the need  for  phase  additions.
Results  illustrate  the  potential  of the model  and  of  the  multiphase  equilibrium  algorithm,  by  predicting
different  phase  configurations  under  confinement.  Each  kind  of pore  may  confine  phases  with  very  similar
or very  different  densities  and  compositions.  Furthermore,  it is shown  that  the  methodology  of  this  work
can  predict  the  formation  of  transition  regions  like those  of  oil reservoirs.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Confinement in small scales changes fluid properties due to
geometric constraints imposed on fluid molecules and interaction
between these molecules and the pore walls (molecule–wall inter-
action). As an example, confinement may  shift the phase transitions
of a fluid, so that the confined fluid in equilibrium with a given bulk
phase may  be either a gas-like or a liquid-like phase, depending on
the pore size and on the molecule–wall interaction energy [1,2]. In
natural oil reservoirs, these effects give rise to transition regions
known as GOC (gas–oil contact) and WOC  (water–oil contact),
where phases with different densities coexist at the same vertical
level of the porous rock, due to its heterogeneity [3]. The occur-
rence of transition regions can be attributed to a variable capillary
pressure through the reservoir because of different molecule–wall
interactions in structurally or chemically distinct pores. The pre-
diction of this phenomenon is important for oil recovery processes.
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A detailed description of the local properties of confined fluids
demands sophisticated approaches, such as molecular simulation
techniques [4]. However, these techniques still have large com-
putational cost, hindering their application to process simulation
problems. Another approach, simplistic but with minimum compu-
tational cost, is the use of traditional adsorption isotherm models.
Nevertheless, this approach combines different models for the bulk
and adsorbed phases [5] and is unable to describe phase transition
behavior between the confined and bulk states with a single set of
parameters.

A third approach, developed more recently, is the use of an
analytical equation of state that represents the main effects of con-
finement explicitly. This kind of model allows a continuous and
self-consistent description of the fluid global properties as a func-
tion of the system dimensions. Besides, if the same equation of state
is valid for bulk and confined fluids, existing algorithms for phase
equilibrium calculations can be readily adapted to solve general
adsorption equilibrium problems. Few models of this kind were
proposed in the literature [6–8] and none of them is sufficiently
accurate, in a large range of conditions, for application in engineer-
ing problems. One important application would be the prediction,
with a single model, of the equilibrium distribution of oil and nat-
ural gas in the highly heterogeneous structures of shale reservoirs,
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in order to promote their recovery from these potential energy
supplies [9].

In our previous work [10], an extension of the van der Waals
equation of state was developed for modeling the behavior of
confined fluids as an explicit function of pore size and of the
molecule–wall interaction. Therefore, the same model could be
used for both adsorbed and bulk phases, providing a consistent
description of adsorption systems. This model describes different
types of adsorption isotherms and several features of the confined
fluid critical behavior [11] as predicted by theoretical work in the
literature, like the emergence of a second critical point [12].

In this work, the same methodology used to extend the van der
Waals model to confined fluids was applied to other cubic equations
of state. The model obtained from the Peng–Robinson equation of
state was used in a multiphase equilibrium calculation algorithm in
order to investigate the phase configurations of pure fluids and mix-
tures confined in homogeneous and heterogeneous porous media.

2. Equations of state for confined fluids

The formulation of the model based on the van der Waals equa-
tion of state is discussed in detail elsewhere [10]. Here, we follow a
similar modeling approach, which we summarize, focusing on the
differences among the confined fluid models obtained from other
equations of state.

Model development was guided by the generalized van der
Waals theory [13,14]. The starting point is the canonical partition
function (Q), from which all thermodynamic properties of a closed
system can be obtained:
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where T is the temperature, V is the total volume, N is the total
number of molecules in the fluid mixture, NC is the number of
fluid components, index i denotes a component, q and � are intra-
molecular and translational contributions, respectively, k is the
Boltzmann constant, Vf is the free volume, and Econf is the configu-
rational energy. The system description is completed by assuming
models for Vf and Econf, which determine the repulsive and the
attractive parts of the equation of state, respectively.

Assuming the classic mixing rule for the volume parameter of
the equation of state, Vf is modeled by:

Vf = V −
NC∑
i=1

(
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)

where �max,i is the packing density of pure component i, whose
dependence on pore size was obtained by fitting literature data
[15] of hard spheres packed in cylinders:
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where �i is the molecular diameter of component i, rp is the pore
radius, and the fitting constants are c1 = 1.158, c2 = 0.479, c3 = 0.621,
c4 = 0.595, and c5 = 4.014. For consistency with the packing density
predicted by the equation of state which is being extended to con-
fined fluids, �i must be calculated from the bulk volume parameter
(bi) by [10]:

�i = 3

√
c1
Nav

bi

where Nav is the Avogadro number.

Table 1
Coordination number model for different bulk equations of state.
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Most of the cubic equations of state in common use differ
only in the attractive part, which depends on the Econf model.
Considering that the pairwise interaction of fluid molecules
(molecule–molecule interaction) occurs through a square well
potential, the molecule–wall interaction occurs through another
square well potential, and the interaction potentials of all fluid
components are pairwise additive, Econf was modeled by [10]:

Econf = −
NC∑
i=1

NC∑
j=1

(
Nj
2
Nc,ijεij

)
−

NC∑
i=1

(
NiFp,iεp,i

)
where εij is the intermolecular interaction energy between compo-
nents i and j, εp,i is the interaction energy between one molecule
of component i and the entire pore wall, Nc,ij is the coordination
number (i.e., the number of molecules of component i that coordi-
nate with a central molecule of component j), and Fp,i is the fraction
of the confined molecules in the range of the pore wall attractive
field. In the previous equation, the first term on the right hand side
accounts for molecule–molecule interactions and the second one
accounts for molecule–wall interactions. The term Fp,i is intended to
represent the distribution of fluid molecules inside the pore, which
depends on temperature, fluid density, and geometric features of
the system. This term was  modeled by an empirical expression that
satisfies some physical limits expected for the system [10]:

Fp,i = Fpa,i +
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))(
1 − xi�

�max,i

)�i
where � is the fluid density, xi is the mole fraction of component i,
Fpa,i is the value of Fp,i for random distribution of the fluid molecules
inside the pore:
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�i is a geometric term:
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and ıp,i is the square well width of the molecule–wall interac-
tion potential of component i. The coordination number was  also
modeled by an empirical expression:

Nc,ij = Nbc,ij

(
1 − 2

5
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)

where Nb
c,ij

is the bulk coordination number, �ij is the mean molec-
ular diameter for components i and j, and the term in parenthesis
accounts for the coordination number decrease with pore size
reduction. The Nb

c,ij
expression is specific for each bulk fluid equa-

tion of state and depends on the mixing rules adopted. Table 1
shows the underlying Nb

c,ij
expressions for different bulk models,

assuming classic mixing rules. In these expressions, c and d are
constants, fS,ij and fPR,ij are functions of temperature, and �max is
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