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a b s t r a c t

A reliable algorithm for the solution of fluid phase equilibrium at constant pressure and temperature (P,
T flash) is presented. The approach is applicable to multi-component mixtures described with general
equations of state and is based on a formulation of P, T phase equilibrium as a dual optimisation prob-
lem in volume-composition space, translated away from the Gibbs free energy to the Helmholtz free
energy. This formulation facilitates the use of guaranteed solution algorithms, particularly in the case of
sophisticated equations of state (EOSs) such as SAFT (statistical associating fluid theory), because such
representations are higher-than-cubic functions in volume and are formulated in the Helmholtz free
energy. With the proposed algorithm (which is based on a combination of local and global optimisation,
where the number of subproblems to be solved globally is kept at a minimum) one is guaranteed to iden-
tify the number of stable phases present at equilibrium, along with their properties, without any need for
initial guesses, or indeed any a priori knowledge about the behaviour of the system. The method is appli-
cable to the calculation of any kind of fluid phase behaviour (e.g., vapour–liquid (VLE), liquid–liquid (LLE),
vapour–liquid–liquid (VLLE), etc.). Several algorithmic options are investigated and their computational
performance compared. A prototype implementation is used to determine the fluid phase equilibria of
a number of binary and ternary systems, where the thermodynamic properties are calculated through
a molecular-based EOS. Examples are shown for the VLE and VLLE for mixtures modelled with an aug-
mented van der Waals EOS, a non-cubic EOS that incorporates the Carnahan and Starling representation
of the repulsive interactions. Further examples are presented for VLE and VLLE in polymer systems, mod-
elled with an EOS of the generic SAFT form. Fluid phase equilibrium calculations for polymer systems are
notoriously difficult, and convergence problems are often encountered, even with good initial guesses.
The proposed method is found to be reliable in all cases examined.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The reliable determination of phase equilibrium is important in
process and product design, as the appearance and disappearance
of phases, and the composition of the stable phases, greatly affect
process performance and product end-use properties. The phases
at equilibrium depend on key design variables such as total com-
position, temperature and pressure. Within process modelling, the
solution of phase equilibrium is the task to which the majority of
CPU time is devoted. Even for binary mixtures, this problem can be
challenging [1–3], due to the high degree of nonlinearity and the
presence of discontinuities.

In many applications, the phase equilibrium problem at given
pressure, temperature and total composition, the P–T flash, is of
interest. This problem can be briefly described as follows: Given a
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multi-component mixture with specified total composition, pres-
sure and temperature, how many stable equilibrium phases are
present and what are their properties? The solution of phase equi-
librium lies at the global minimum of the system’s total Gibbs
free energy [4]. This function is related to the intensive Gibbs free
energy which has the natural variables x, P, T, where x is a vector
of component mole fractions, P is pressure and T is temperature.
One particularly challenging aspect of the formulation is that the
number of phases is generally unknown [5].

There is a large body of work on this subject, the most success-
ful general concept to date being the alternating stability test/flash
approach first introduced by Michelsen [6–8]. The development of
reliable methods for the solution of phase equilibrium and stabil-
ity remains an active area of research. A number of deterministic
techniques have been proposed, in which analysis of or insight into
the problem is used to increase the likelihood of finding the sta-
ble solution (e.g., [9–15]). A global analysis of the solution space
is undertaken in several of these algorithms, e.g., ([11,15]), but
without a formal guarantee of convergence. Such approaches are

0378-3812/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.fluid.2010.08.001

dx.doi.org/10.1016/j.fluid.2010.08.001
http://www.sciencedirect.com/science/journal/03783812
http://www.elsevier.com/locate/fluid
mailto:c.adjiman@imperial.ac.uk
dx.doi.org/10.1016/j.fluid.2010.08.001


2 F.E. Pereira et al. / Fluid Phase Equilibria 299 (2010) 1–23

particularly valuable where computational speed is a prime con-
sideration. The correct solution is identified in many cases, but not
in some difficult instances as discussed in [16–20]. Several guar-
anteed deterministic techniques have also been developed, such as
those discussed in [21–27], where the focus is placed on providing
a mathematical guarantee of finite convergence to within a toler-
ance � of the solution. Through the use of interval analysis, it is
possible to extend the guarantee of correctness so that mathemat-
ical and computational convergence can be ensured, regardless of
the round-off error, as shown in [18,28–31]. Finally, a number of
stochastic algorithms have been developed that provide an infinite
time guarantee of convergence [32–34]. Further references can be
found in the reviews by Wakeham and Stateva [35] and by Segura
et al. [36].

The use of guaranteed deterministic techniques comes at a com-
putational cost, but they are particularly useful in difficult cases, or
in cases where there are no external means of checking correctness,
such as in parameter estimation [1]. In order to increase computa-
tional performance, a combination of local and global solvers is used
to solve nonconvex subproblems in several guaranteed determin-
istic techniques, e.g., see [18,24,30]. The objective is to develop an
algorithm for the solution of phase equilibrium, hereafter referred
to as the PE algorithm, that guarantees convergence to the correct
solution in finite time. The nonconvex subproblems are the tangent
plane stability problem and the flash (or phase split) problem for a
fixed number of phases. To guarantee that the correct solution of
phase equilibrium has been found, it is necessary to use a deter-
ministic global optimisation algorithm at least once during the PE
algorithm, to solve the tangent plane stability test: if the proposed
solution is found to be stable through this global test, the problem
is solved and the PE algorithm can terminate. If it is found not to be
stable, a flash problem must be solved for a fixed number of phases
to generate a new solution, and a stability problem must eventually
be solved to global optimality for a new potential phase configura-
tion. The use of global optimisation for phase stability guarantees
that when a final solution is reported by the PE algorithm, it is sta-
ble, i.e., the PE algorithm cannot converge to a wrong solution. This
is not enough, however, to guarantee that the PE algorithm will
find the stable solution in a finite time. For this, one must be able to
guarantee that, for a given number of phases, the solution with the
lowest Gibbs free energy is found. A local phase split algorithm is
highly dependent on starting points and could converge repeatedly
to a metastable solution, for example. In practice, this behaviour is
often avoided by generating good initial points. Nevertheless, the
only way to offer a theoretical guarantee of finite-time convergence
is to ensure that global optimisation can be used to solve the flash
problem; such an approach is implemented in GLOPEQ [24].

In the present work, we focus on the development of a guaran-
teed deterministic framework that can be applied to any equation
of state (EOS), including those that are higher-than-cubic in vol-
ume such as the statistical associating fluid theory (SAFT) [37,38].
Higher-than-cubic EOSs are becoming increasingly popular due to
their predictive capabilities for complex fluids, such as associating
(i.e., hydrogen bonding) and polymer mixtures. When dealing with
such approaches, which are typically formulated in the Helmholtz
free energy A(x, V, T), where V is volume, the guaranteed solu-
tion of phase equilibrium is subject to additional difficulties. The
Helmholtz free energy is the natural thermodynamic potential for
developments within a statistical mechanical framework and has
x, V, T as natural variables, as opposed to x, P, T for the Gibbs free
energy. If the EOS is first-order in volume, then moving between
the Helmholtz and Gibbs free energies is a trivial exercise. Unfor-
tunately, this is only the case for the ideal gas EOS. For other EOSs,
the evaluation of constant pressure properties requires a minimi-
sation of the Gibbs free energy with respect to volume, with a
constraint relating the volume to the pressure. This minimisation

is often realised through the identification of all the volume roots
of the EOS, and then the selection of the physically meaningful root
(i.e., the most stable root, with the lowest Gibbs free energy). In
the case of cubic equations of state, the volume roots of the EOS
may be obtained analytically. For higher-than-cubic equations, cal-
culations at a specified pressure and temperature are more time
consuming, since the determination of G(x, P, T) at each point in
composition requires the use of a nonlinear solver that can reliably
identify the appropriate volume root for use in the calculation. In
addition to increasing the cost of each Gibbs free energy evaluation,
this inner minimisation can lead to complications when developing
deterministic guaranteed approaches to fluid phase equilibrium.
For instance, Xu et al. [30] have shown that the presence of an
inner iteration can lead to large increases in the computational cost
with a guaranteed deterministic algorithm. Though in the case of
[30] the inner iteration is the system of equations arising from the
association term of the SAFT approach [37,38], the solution of the
pressure equation is also likely to lead to increases in computa-
tional cost: it is a low-dimensional but highly nonlinear problem.
A promising avenue in this context is the formulation proposed by
Nagarajan et al. [39,40], who developed a stability test and flash cal-
culation method based on the Michelsen methodology, but using
component molar densities as independent variables. This circum-
vents the need to solve for the volume roots of higher-than-cubic
EOSs. It can also lead to enhanced robustness [19]. This formulation
has been used successfully in an interval-based global optimisation
algorithm to solve multi-component phase equilibria with a version
of SAFT [30] and in a stochastic global optimisation algorithm [41].

Mitsos and Barton [27] have recently proposed an alternative
approach to identifying a stable phase. They showed that the solu-
tions of a dual formulation stemming from a single-phase Gibbs
free energy minimisation problem, where mass balance constraints
are imposed, are the stable equilibrium phases. This is an elegant
new approach to the phase equilibrium problem, which requires no
prior knowledge of the system being examined, neither in terms of
the number of equilibrium phases present, nor in terms of the equi-
librium phase compositions. At the solution of the dual problem,
the composition of one of the stable equilibrium phases is obtained,
as well as the equilibrium chemical potentials of all components.
This information completely describes the common tangent plane
connecting the equilibrium phases, and therefore may be used to
find all other stable phases, which are in fact all the other (global)
solutions of the dual problem. The dual approach has been applied
to several case studies using the NRTL and UNIQUAC models and
has been used in parameter estimation for a number of thermo-
dynamic models [42,43]. Although the presence of a vapour phase
is considered in [43], it is treated as ideal. In the solution algo-
rithm proposed in [27] for the dual problem, one iterates between
solving linear and nonconvex optimisation problems. The noncon-
vex problem has the same dimensionality as the tangent plane
distance minimisation problem and a similar functional form. A
feature of the dual approach is that it is not necessary to minimise
the Gibbs free energy for different guesses of the number of phases.
This approach has the potential to reduce the computational time
required to solve the phase equilibrium problem provided that the
number of iterations between the nonconvex and linear problems
can be kept relatively low, and that, once a stable phase has been
found, the remaining phases can be identified at low cost. This war-
rants further investigation and development for the case of general
equations of state, particularly in the context of algorithms that
identify all stable equilibrium phases.

In this paper, we develop a dual-based formulation of P, T phase
equilibrium cast in the Helmholtz free energy and a guaranteed
deterministic algorithm for its solution. The approach is general
for any equation of state and any number of components. Instead
of component molar densities [39], mole fractions and total molar
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