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a b s t r a c t

In a recent communication [Fluid Phase Equilib. 272 (2008) 93–95], Duda and Orea suggested the
existence of remarkably simple relationships among the critical parameters of several model flu-
ids with variable interaction range. In addition, they introduced a new way of scaling supercritical
pressure–volume–temperature (PVT) data for a pure substance in a corresponding-states representa-
tion. Using different mean-field theories for the square-well fluid and the Yukawa fluid, we investigate
whether these approximate equations of state adhere to the new criteria formulated by Duda and Orea. It
is found that most theories indeed predict the suggested simple linear relationships between the critical
pressure and the critical temperature as well as between the critical density and the reciprocal of the
critical temperature for long interaction ranges, but deviations from these simple rules occur for short
interaction ranges. Some of the theories, however, indicate that the dependence of the critical density on
the interaction range might be more complicated for the square-well fluid. The revised scaling concept
of representing the reduced pressure P/Pc at a given reduced temperature T/Tc as a function of the newly
defined reduced density ��/�2/3

c , where � denotes the diameter of a particle, does indeed lead to a better
agreement of the data for different interaction ranges than the conventional scaling in terms of �/�c for
both model fluids studied here.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Recent simulations of several model fluids with variable inter-
action range have led Duda and Orea [1,2] to proposing a revision
of the way the density is scaled when applying a long-standing
principle in thermodynamics: the law of corresponding states. This
principle offers a unified description of the behavior of pure fluids
and was first formulated by van der Waals within the framework
of his famous equation of state [3–5]:

P = �kT

1 − �b
− a�2, (1)

where P denotes the pressure, T the absolute temperature, and �
the number density, while a and b are the cohesion parameter and
the excluded volume, respectively; k is Boltzmann’s constant. By
scaling the state variables P, T, and � (or, equivalently, the molar
volume V) by their respective critical values, Pc , Tc , and �c , van
der Waals obtained an equation of state in terms of the reduced
variables PR = P/Pc , TR = T/Tc and �R = �/�c , which would be uni-
versally applicable if all pure substances obeyed the van der Waals
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equation:

PR = 8�RTR

3 − �R
− 3�2

R. (2)

The individual properties of any of these (hypothetical) substances,
which are described by only two parameters, a and b, within the
van der Waals equation of state, are accounted for by the specific
critical parameters of the respective fluid. While the van der Waals
equation of state is not particularly accurate for any real or model
fluid, it is qualitatively correct in many respects (with the excep-
tion of the fluid’s critical behavior due to the mean-field character
of the van der Waals equation). In particular, it can be shown [6]
that the behavior of simple fluids whose pair interaction poten-
tial is spherically symmetric, of sufficiently short range and which
depends on only two parameters adheres to a corresponding-states
law as conceived by van der Waals, even if these fluids do not obey
his equation of state exactly. These two parameters determine the
interaction potential u acting between two molecules of the fluid
by setting the characteristic energy scale � and the length scale �
of this interaction. The molecular properties � and � play the role
of the van der Waals parameters a and b on the microscopic scale,
even if the fluid behavior is not accurately described by the van der
Waals equation. For a hypothetical van der Waals fluid composed
of attractive hard-sphere particles, these parameters are interre-
lated by a = −2�

∫ ∞
�

r2u(r)dr and b = 2��3/3, where u(r) denotes
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the attractive pair potential and r the interparticle distance [6,7];
the energy scale � is then set by the energy of two particles at con-
tact, u(�). The numerical value of a depends, of course, on the exact
details of the function u(r), not only on its value at contact, u(�),
which determine �.

A generalized principle of the corresponding-states idea, inde-
pendent of any specific equation of state, was formulated and tested
by Guggenheim [8]. In addition to the pressure as a function of tem-
perature and density, he found other properties, such as the surface
tension, the second virial coefficient and the liquid–vapor coex-
istence curve, to follow a corresponding-states law as well when
expressed in suitably reduced units. These laws are particularly
well obeyed by simple nonpolar substances, such as noble gases,
oxygen, and nitrogen, but deviations are seen for strongly dipolar
substances, especially for those whose molecules are able to form
hydrogen bonds [9]. As already Guggenheim remarked in his arti-
cle [8], these cases should not simply be regarded as failures of the
corresponding-states principle, but rather as opportunities to learn
more about the behavior of complex fluids.

As mentioned above, the law of corresponding states can be
shown to hold rigorously for families of fluids for which the interac-
tion potential is spherically symmetric, of sufficiently short range
and characterized by only two parameters [6], one of which sets
the energy scale, the other one the characteristic length scale of
the fluid model. The Lennard–Jones potential is a famous example
of such a potential:

u = 4�

[(
�

r

)12
−

(
�

r

)6
]

. (3)

Deviations from the corresponding-states principle formulated
above must, however, already be expected for fluids which, while
retaining the spherical symmetry of the pair interaction potential,
require a third parameter – l, say – to specify the range of these
interactions. Prominent examples of simple fluids with variable
interaction range are the square-well fluid and the Yukawa fluid,
which are the subject of this article (cf. Section 2). Less frequently
studied model fluids in the context of varying interaction range
include the Sutherland fluid and the Mie fluid.

When the respective interaction-range parameter of any
of the above-mentioned model fluids is changed, the simple
corresponding-states idea that PR = f (TR, �R) is represented by a
complicated, but universal function f which is independent of the
interaction range, is expected to break down [6]. Although the
critical parameters (Pc , Tc , and �c and, therefore, also the critical
compressibility factor Zc) depend on the interaction-range param-
eter as well, these variations are, in general, insufficient to scale
out the range dependence of PR, which should then be denoted as
PR(TR, �R; l). Questions that arise in this context are (a) how severely
will the deviations of PR(TR, �R) from a universal corresponding-
states behavior be if the conventional density scaling is used and
the interaction-range parameter is varied and (b) is there a way
of revising the conventional density-scaling approach in such a
way that the principle of corresponding states remains universally
applicable?

Analyzing their recent simulation results for the Yukawa, Mie,
and Sutherland fluids, Duda and Orea [1,2,10] suggested that a scal-
ing of the density according to �r = ��/�2/3

c leads to a significantly
improved collapse of the pressure data PR(TR, �r) of these fluids
than the conventional density scaling does; the dependence on
the interaction-range parameter is thus scaled out. No comparable
simulation work has been carried out on the square-well fluid yet,
but there are indications that it may be an exceptional case in the
family of the above-mentioned simple model fluids with variable
interaction range. The somewhat irregular behavior is suggested
by the changes of the critical parameters found for the square-well

fluid when the interaction range is varied. For the Mie, Yukawa,
and Sutherland fluids, Duda and Orea [1,2,10] observed remark-
ably simple linear relationships between the critical temperature
and the critical pressure as well as between the critical density and
the reciprocal of the critical temperature. For the square-well fluid,
however, especially the latter relationship seems to be more com-
plicated [11]. In the above definition of the new reduced density
variable �r = ��/�2/3

c , the particle diameter � is included to pro-
duce a dimensionless quantity; it represents the unit of length in
the model fluid and has the advantage of being state-independent.

The aim of this study is to check if mean-field equations of state
confirm the remarkable simulation results of Duda and Orea or
if significant differences are seen. In addition, it is of interest to
see how badly the conventional van der Waals scaling PR(TR, �R)
fails for fluids of variable interaction range, both within mean-field
theory and in simulations.

Due to the lack of sufficiently tested mean-field theories (equa-
tions of state) for the less frequently studied Sutherland and Mie
fluids, we focus on the square-well and Yukawa fluids here, for
which integral-equation studies, perturbation theories, and virial
equations of state are available and have been sufficiently checked
against computer simulations for us to be able to assess their range
of validity [12].

The remainder of the paper is organized as follows: In Section 2,
we introduce the model fluids and the respective theories used to
describe their thermodynamic behavior. The results we obtained
for the critical parameters as functions of the interaction-range
parameter are compiled and analyzed in Section 3.1. Section 3.2 is
dedicated to the application of the revised density-scaling approach
of Duda and Orea, the performance of which with respect to the
corresponding-states behavior of the pressure is compared to the
conventional van der Waals scaling for the two model fluids. A brief
summary of the most important findings is given in the concluding
Section 4.

2. Model fluids and mean-field theories

The model fluids selected for a study of the influence of
the interaction range on the critical parameters and on the
corresponding-states behavior of the pressure in the different
density-scaling approaches are the Yukawa fluid and the square-
well fluid, which are particularly amendable to analytical theory.
The piecewise constant square-well potential is by far the easiest to
study theoretically because there is no explicit dependence of the
pair interaction energy on the interparticle distance r. It may, in fact,
be regarded as the simplest model fluid that displays liquid–vapor
coexistence. In the Yukawa fluid, the attractive interactions decay
exponentially (see below). This fluid model is often used to describe
colloidal systems in which the Coulomb interactions among the
particles are screened by counterions. The Debye screening length,
which governs the exponential decay of the interaction potential in
such systems, is determined by the ionic strength of the solution,
its dielectric permittivity, and the temperature and is, therefore,
state-dependent. In the Yukawa potential, however, this screening
parameter is fixed.

2.1. Yukawa fluid

For this first model fluid with variable interaction range, the
potential between two particles is defined by

u =
{

−�
exp[−�(r − �)/�]

r/�
, r ≥ �,

∞, r < �,
(4)

where � is the depth of the potential of the two particles at con-
tact, and � denotes their hard-sphere diameter, i.e., the distance
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