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Abstract

This work presents an extension of a generalized van der Waals-type equation of state by including a crossover treatment to consider the
fluctuations in the critical region. The original cubic equation depends on simple parameters of pure fluids, and it is able to reproduce vapor
pressures and densities over a wide range of conditions, once the appropriate parametrization techniques are used. The equation is forced to
reproduce the critical point by explicitly including this point into the fitting procedure. However, as all mean field theories, the equation does not
take into account the fluctuations appearing as the critical region is approached. Hence, the non-analytical asymptotic behavior in the vicinity of
the critical point is not well reproduced, leading to some inaccuracies in liquid and/or gas phase equilibria density calculations. To overcome this
limitation we have applied a specific crossover treatment, based on White’s work [J. White, Fluid Phase Equilib. 75 (1992) 53–64; L.W. Salvino,
J.A. White, J. Chem. Phys. 96 (1992) 4559–4568] from the renormalization group (RG) theory [K. Wilson, Phys. Rev. B4 (1971) 3174–3205].
This treatment is done by incorporating the scaling laws valid asymptotically close to the critical point. In addition to accurate density estimations
far from and close to the critical point, the extended equation is also able to reproduce the universal critical exponents describing the approach to
the critical point. The extended equation has been applied to two chemical families: the n-alkanes and 1-alkanols, as well as to other compounds
of industrial interest, including carbon dioxide, ethylene, toluene, xenon and water, providing excellent agreement with experimental data.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Much effort has been devoted during the last years to the
study of the critical region of pure fluids and their mixtures.
The increasing number of industrial applications near the critical
conditions has encouraged researchers to seek for an accurate
description of the thermodynamic behavior of pure fluids and
their mixtures in the vicinity of the critical point. However, the
complex molecular behavior of any compound at these condi-
tions makes it a difficult task. It is well known that near the
critical region, density and concentration fluctuations caused by
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long-range correlations among all the molecules lead to sin-
gularities of the pure compound properties (and mixtures) at
the critical point. The value of some properties changes very
rapidly with a small modification of the operation conditions.
From the mathematical point of view, the approach to the critical
point leads to a non-analytic asymptotic behavior different that
the one observed far away from the critical region. Most equa-
tions of state (EoSs) cannot reproduce this change of behavior
because they are based in mean-field theories that do not take
into account the inherent fluctuations in the critical region. Even
the most refined molecular-based EoSs fail in the representa-
tion of the near-critical properties, unless a specific treatment is
included.

In order to overcome this limitation, some efforts have been
devoted to this task in the recent years. For instance, molecular-
based EoSs parameters have been rescaled to the critical region,
achieving good estimations in this region [1–4], although the
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new set of parameters was no longer valid for calculations far
from the critical region, where some deviations were observed.
An alternative approach is to include critical experimental data
into the fitting of cubic EoSs in order to assure a correct descrip-
tion of the critical point, even though this deteriorates liquid
density estimations far from the critical point [5,6]. The two pre-
vious papers of this series dealt with the improvement of van der
Waals models [5,6] providing a direct parameterization scheme
for specializing cubic EoS to the prediction of vapor–liquid equi-
librium and vapor pressures. A generalized method applicable to
a four-parameter cubic equation of state has been developed for
this purpose. The required input data are the critical properties
(temperature, pressure and volume) together with the boiling
temperature, the local geometry of the vapor pressure curve and
the volume of the liquid phase at a reference point. As shown in
ref. [6] the method, applied to a large database of pure fluids, was
able to predict accurate vapor pressures and reasonably accurate
liquid volumes from the reference point up to the critical range.
However, as it is stated in both papers, although good results
can be achieved, the fluctuations inherent to the critical region
were ignored, and some deviations in the liquid phase occurred
as the shape of the curve was not well reproduced in the whole
region. A proposed solution was the introduction of a τ factor
that modified the critical compressibility factor but improved
the shape of the liquid density curve [6]. While the τ factor gave
an overall better shape of the curve, the inherent fluctuations
near the critical region were still ignored and the equation was
not able to capture the non-analytic asymptotic approach to the
critical point.

In fact, the rigorous estimation of vapor liquid equilibria far
from and close to the critical region requires a specific treat-
ment taking into account the long-range fluctuations as one
approaches the critical point. This effect can be incorporated
by the application of a treatment based on the renormalization
group (RG) theory [7]. Based on that work, some authors have
developed different treatments to couple the RG theory to sev-
eral EoSs, being able to reproduce the whole phase envelope
[7–24]. These treatments are usually called crossover theories
as they describe the crossover behavior from classical to non-
analytical as the critical region is approached. The accuracy of
these so-called crossover equations lays on the accuracy of the
equation to which the non-classical behavior is coupled to since
the equation reduces to the original equation far from the critical
point.

One of the main advantages of adding a crossover term to
correct the non-analytical behavior is that the methodology for
critical region calculations can be implemented to any EoS
model. The coupling between a classical EoS and a renormaliza-
tion group method permits to obtain good results close to and far
from the critical region using a unique set of parameters. Accu-
rate phase equilibria descriptions have been obtained coupling
this approach to the Statistical Associating Fluid Theory (SAFT)
EoS [7–11], to the soft-SAFT EoS [12,13], to an EoS for chain
fluids called EOSCF [14,15], to the mean sphere approxima-
tion (MSA) [16], to the first-order mean sphere approximation
applied to SAFT (FMSA-SAFT) [17,18] and also to the SRK
EoS [19,20]. Although there are other available approaches for

calculating the fluctuations near the critical region [21–24],
White’s approach [8,9] was chosen in this work because of its
mathematical simplicity (compared to the hierarchical reference
theory of Parola et al. [21,22]) and the fact that fewer parameters
are needed, and they are transferable within chemical families (as
compared to the crossover-Landau method applied by Kiselev
et al. [23,24]).

The objective of this work was to apply the crossover treat-
ment proposed by White [8] and improved by Prausnitz and
co-workers [14,15], into a van der Waals-type equation of state,
in a similar manner as done by Cai and Prausnitz [19] for
the Soave–Redlich–Kwong equation, to further improve the
approach presented in previous works [5,6]. The purpose was to
combine the simplicity of a cubic EoS with a specific treatment
to consider the fluctuations in the critical region. In some previ-
ous works [12,13], the accuracy of the methodology was tested
for a molecular-based EoS, the soft-SAFT EoS; this information
has been used here to compare the performance of both equa-
tions in order to check the effect of the crossover treatment in
each case.

The rest of the paper is organized as follows. In Section 2,
a summary of the van der Waals equation model is presented,
along with the crossover methodology and its implementation
into the equation. Results are presented and discussed in Sec-
tion 3, where the modified equation is applied to the calculation
of several non-associating and associating compounds. A com-
parison with the soft-SAFT molecular-based EoS [25] with the
same crossover treatment is done in some cases. The last sec-
tion summarizes the main findings, giving some concluding
remarks.

2. Methodology

We have considered a crossover approach applied to the
following classical four-parameter van der Waals-type [25],
described in detail in references [5,6]:

P = RT

ṽ − b
− a

(ṽ + c1b)(ṽ + c2b)
(1)

where a and b are the cohesion and repulsion parameters, respec-
tively, ṽ is the molar volume, T is the temperature, R is the gas
constant and P is the pressure. c1 and c2 are the additional param-
eters that permit the specialization of the EoS in Eq. (1) to predict
the liquid phase density data [6]. In addition, a and b are given
by:

a = Ωa
(RTc)2

Pc
α(T ) (2a)

b = Ωb
RTc

Pc
(2b)

Ωa, Ωb are the numerical constants that can be calculated from
Eq. (1) by applying the critical point conditions (PV = P2V = 0),
thus yielding an exact description of the critical temperature and
pressure in the classical approach of the EoS (with no crossover
term). α, in turn, corresponds to the thermal cohesion function.
The correlation of Stryjek and Vera [26] has been selected in



Download English Version:

https://daneshyari.com/en/article/203206

Download Persian Version:

https://daneshyari.com/article/203206

Daneshyari.com

https://daneshyari.com/en/article/203206
https://daneshyari.com/article/203206
https://daneshyari.com

