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a  b  s  t  r  a  c  t

The  explicit  equation  of  dew-bubble  curves  in  the  vicinity  of  vapor–liquid  critical  points  in mixtures  has
been  derived  within  the  scope  of scaling  theory  and  principle  of  isomorphism.  It is  shown  that  along
these  curves  the  pressure  and  the temperature  depend  non-analytically  on the  mixture  density.  As a
consequence,  the second  derivatives  (d2T/d�2)DBC and  (d2P/d�2)DBC (taken  along  the  dew-bubble  curves)
reveal  cusp-like  anomalies  at the  critical  point.  This  specific  feature  enables  one  an  easy  estimation  of the
critical  parameters  of  multicomponent  mixtures  directly  from  fitting  a  polynomial  to  dew-bubble-curve
experimental  data.  To justify  the  proposed  approach,  the  experimental  data  on dew-bubble  curves  for
several  binary  and  multicomponent  mixtures  have  been  analyzed  and  the positions  of their  critical  points
have  been  determined.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

One of the challenging problems arising from the study of phase
behavior in multicomponent fluids is the reliable determination of
their critical parameters. The knowledge of these parameters is nec-
essary both for fundamental description of fluids and for various
engineering applications. At present, there are several ways that
are commonly used to determine the position of the vapor–liquid
critical point. For example, the critical parameters can be calcu-
lated from empirical cubic equations of state (various modifications
of the van der Waals equation) and from simulation studies of
atomistic models. Such calculations need the exact knowledge of
mixture composition and usually do not provide the required accu-
racy and reliability of the critical parameters.

Existing experimental techniques, in principle, can be used
to directly determine the critical points of mixtures. The most
direct experimental method is the measurement of the pressure
dependence of liquid-phase amount at fixed temperature, i.e. the
so-called isopletic line [1]. Unfortunately, this method has a serious
drawback because of the need of visual observation of experimen-
tal sample. In addition, the amount of the liquid phase in the critical
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region changes abruptly, which may  also decrease the accuracy in
determination of the critical parameters.

Another way  to obtain the critical parameters experimentally,
in particular the critical density, is the analysis of discontinuities
of the isochoric heat capacity C�,x and the temperature derivative
of the pressure (∂P/∂T)�,x at the transition point between the two-
phase and one-phase regions. Both jumps are known to be zero at a
mixture critical point [2]. The study of the density dependencies of
these jumps allows, in principle, to determine the isochore where
the jumps are vanishing, thus the critical density can be established.

The measurement of anomalous behavior of physical charac-
teristics of near-critical fluids ensures one more way to determine
the mixture critical parameters. For example, measurements of C�,x

and the derivative (∂P/∂T)�,x [2,3] as well as the measurements of
the scattered-light intensity of the critical fluctuations [4–6] are
suitable for this purpose. The drawback of such approach is that
the observable anomalies of physical properties demonstrate rela-
tively weak density dependence, so that it is hard to determine the
critical isochore from the set of experimental data. To overcome
such difficulty, one needs to possess very accurate experimental
data obtained with small temperature and density steps. Descrip-
tion of thermodynamic properties of near-critical fluids based on
the scaling theory also involves the location of mixture critical
points [2]. The critical parameters are considered as adjustable
ones and their values can be found from fitting the chosen the-
oretical model to the experimental data. However, the accuracy
of the obtained critical-parameter values depends strongly on the
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chosen theoretical model as well as on the number of adjustable
parameters. In addition, the need of the processing of a large num-
ber of experimental data with sophisticated software makes this
approach time-consuming.

The present work suggests an alternative approach. Usually it is
supposed that the location of the mixture critical point is not dis-
tinguished at the dew-bubble curve (DBC). However, in this work
we show that the scaling theory and the principle of isomorphism,
as specified in ref. [7], predict a specific cusp-like behavior in the
vicinity of the liquid–vapor critical point for the second deriva-
tives (d2T/d�2)DBC and (d2P/d�2)DBC taken along the dew-bubble
curve. This fact provides the possibility to determine the critical
parameters directly from analyses of DBC experimental data. The
comparison of the results of this approach with the known values
of the critical parameters of several previously studied mixtures
demonstrates that the developed algorithm allows estimating the
critical point position with sufficient accuracy.

2. Equation of state of a fluid mixture

A general approach to derive the equation of state of N-
component mixture at fixed average composition xi (i = 1, . . . N)
in the vicinity of its critical point has been developed in Ref. [7].
The approach is based on the critical-point universality and on the
principle of isomorphism [8–10].

In the framework of this approach, physical properties of near-
critical fluids are described in terms of ordering field h1 and
temperature-like field h2. It is assumed that both fields are ana-
lytical functions of the reduced temperature � and the chemical
potentials of the mixture components ��i and do not depend on
the pressure. This is a simplification of the most general formula-
tion of isomorphism given by the so-called complete scaling theory
[11–16] where the physical properties of fluids are described in
terms of the three scaling fields depending analytically not only
on the reduced temperature � and the chemical potentials of the
mixture components ��i but also on the pressure �P.  As it is
shown in Appendix, the results obtained for DBC in the framework
of complete scaling are consistent with the results of our simplified
approach.

The singular part of the thermodynamic potential near the criti-
cal point is the universal function of two scaling fields h1 and h2
[9,10] and the critical point corresponds to zero values of both
fields, i.e. h1 = h2 = 0. In main approximation the scaling fields can
be written in the form

hk =
N∑

i=1

aki� �̄i + ak�� + . . .,  k = 1, 2. (1)

Here � = T/Tc − 1, � �̄i = �̄i − �̄ic, where �̄i = �i/RTc are the
reduced chemical potentials conjugated to the partial molar den-
sity of a component, while Tc and �̄ic are the critical values of the
temperature and the chemical potentials of the components, and
R is the universal gas constant. In fact, the Eq. (1) represents the
well-known hypothesis of mixing of physical fields [17–19].

The density of the thermodynamic potential of a mixture for the
given variables is the pressure P. Such potential is suitable since
it depends on the thermodynamic variables which have the same
values in coexisting phases. For the convenience we use the dimen-
sionless pressure P̄ = P/�cRTc where �c is the molar critical density
of the mixture. The differential of the pressure takes the form

dP̄ = s̄d� +
N∑

i=1

�̄xi d� �̄i, (2)

where s̄ = s/�cR is the dimensionless entropy of the unit volume,
xi is the mole fraction of i-th component, and �̄ = �/�c is the

reduced density of mixture. In the vicinity of the critical point of
N-component mixture the pressure can be presented as a sum of
singular Ps and regular Pr parts

P̄(�, � �̄i) = Ps(h1, h2) + Pr(�, � �̄i), (3)

where i = 1, . . .,  N. The regular part of the pressure Pr is an ana-
lytical function of � and � �̄i. We  would like to remark that in the
framework of the complete scaling concept this division is auto-
matically provided by mixing of all physical fields into the third
scaling field. As it was mentioned above the singular part of the
thermodynamic potential of a liquid mixture Ps can be parameter-
ized in a universal way  by means of two scaling fields, the ordering
field h1 and the thermal field h2. Differential of Ps is defined as

dPs = ϕ2dh2 + ϕ1dh1. (4)

Here the values ϕ1 and ϕ2 are scaling densities, the strongly fluc-
tuating order parameter ϕ1 and the weakly fluctuating density ϕ2,
conjugated to the scaling fields h1 and h2. The functional form of
ϕ1 and ϕ2 coincide with the corresponding densities of 3D-Ising
model [9].

The partial molar density of a component �̄xi can be calculated
as the first derivative of the pressure over the relevant chemical
potential �̄xi = (∂P̄/∂� �̄i)�,� �̄j /=  i

. Using Eq. (1) and expanding the

regular part of the pressure in vicinity of the critical point over �
and � �̄i, we obtain N equations of the form

� �̄ xi = ( �̄ − 1)xi =
∑
k=1,2

∂Ps

∂hk

∂hk

∂� �̄i
+

(
∂Pr

∂� �̄i

)
�,� �̄j /=  i

− xi

= ϕ1a1i + ϕ2a2i +
N∑

j=1

bij� �̄j + bi�� + · · ·.  (5)

The expansion coefficients bi� and bij are equal to the second deriva-

tives of the Pr at the critical point, i.e. bij = (∂2Pr/∂� �̄i∂� �̄j)
(c)

and

bi� = (∂2Pr/∂� �̄i∂�)
(c)

. In one-phase region Eqs. (1) and (5) can be
considered as N + 2 equations for the unknown variables �, � �̄ and
� �̄i. The solutions of this system can be presented as a series with
respect to scaling densities ϕ1, ϕ2 and scaling fields h1 and h2 in the
form

� �̄i = ci1ϕ1 + ci2ϕ2 + ci3h2 + ci4h1 + ci5ϕ2
1 + . . ., (6a)

� = c�1ϕ1 + c�2ϕ2 + c�3h2 + c�4h1 + c�5ϕ2
1 + . . .,  (6b)

� �̄ = c�1ϕ1 + c�2ϕ2 + c�3h2 + c�4h1 + c�5ϕ2
1 + . . .. (6c)

The substitution of the solutions for � �̄i and � into the expansion
of the regular part of the pressure Pr results in similar expression
for the deviation of the pressure

�P̄ = P̄ − P̄c = cp1ϕ1 + cp2ϕ2 + cp3h2 + cp4h1 + cp5ϕ2
1 + . . ..  (6d)

The scaling densities ϕ1 and ϕ2 in these equations are known uni-
versal functions of the scaling fields h1 and h2. The coefficients
c�i, c�i, and cpi depend on the concentrations in the fluid mixture.
The terms proportional to ϕ2

1 in Eqs. (6a)–(6d) and correspond-
ingly, the terms proportional to ��2 in Eqs. (8a), (8b) (see below)
arise due to the account of the second-order terms on ��i and
� in Eqs. (1) and (5). The Eqs. (6a)–(6d) are valid both for pure
fluids and for mixtures. For a one-component fluid the values �
and � �̄1 can be expressed directly from Eqs. (1) as the expansions
on h1 and h2 fields. It means that in pure fluids the coefficients
c11 = c12 = c15 = c�1 = c�2 = c�5 = 0. Correspondingly, the terms ∼ϕ2

1
in coexistence curves of pure fluids may  appear only due to
the account of the �P  terms in field mixing, i.e. in complete
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