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a b s t r a c t

In this work a Helmholtz energy model is applied to the prediction of thermodynamic properties of air,
the related binary mixtures and the intervening pure components. The Helmholtz energy of the mixture is
represented as two contributions: one from a proven accurate extended corresponding states model and
the other is a correction term. The corresponding states model relies on pure-component shape factors
relative to nitrogen and extension to mixtures with the van der Waals one-fluid mixture model with
ordinary combining rules. The correction term is temperature-, density- and composition-dependent
with the use of a theoretically consistent local composition model with a coordination number model
derived from lattice gas theory. For air the obtained average absolute deviations in densities were 0.090
per cent, 0.15 per cent in speeds of sound, 0.28 per cent in bubble-point pressures and 0.30 per cent
for dew-point pressures. For the three associated binary mixtures, the absolute average deviations in
densities were within 0.14 per cent and 0.63 per cent for bubble-point pressures. For oxygen and argon,
the absolute average deviations were within 0.07 per cent in densities, 0.45 per cent in VLE properties
and 0.012 per cent in speeds of sound.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The purpose of this work is to present a model for the prediction
of thermodynamic properties of air and the related binary and pure-
component systems that is an improved development of a model
published previously [1].

As it is widely known, Helmholtz energy models are useful and
very accurate tools for the prediction of thermodynamic proper-
ties of both pure fluids and mixtures due, in part, to the formal
relationship between the residual Helmholtz energy and the ther-
modynamic surface and derived properties. This is proven by the
success of the multiparameter fundamental or reference equa-
tions of state (EoS) in predicting almost all the thermodynamic
properties with accuracy within the experimental uncertainty
over a very wide range of physical conditions with outstand-
ing examples being the reference EoS’s for methane [2], nitrogen
[3] and carbon dioxide [4]. For the application to mixtures two
avenues may be followed: one is the treatment of the mixture as
a pseudo-pure component for which an EoS is developed such as
the recent fundamental EoS for air by Lemmon et al. [5], whereas
the other approach is the mixture models that express the mixture
Helmholtz energy as the contribution of ideal-mixture and excess
terms, examples of which are those published by Lemmon et al.
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[6,7] and the model dedicated for air that was also published in
[5].

An alternative avenue to produce very accurate approximations
to the residual Helmholtz energy is the generalised corresponding
states models (ECS), examples of which have been presented by the
author et al. for pure fluids [8] and for natural gas systems [9]. Build-
ing upon that experience and following the general approach of the
Helmholtz energy mixture models, the author and colleagues [1,10]
proposed that a very accurate mixture model can be construed
from an ECS model, which gives the basic contribution to the resid-
ual Helmholtz energy, complemented with a correction term that
accounts for a supplemental contribution due to the differences in
intermolecular forces between unlike species.

The structure of the model presented in this work is very similar
to that of [1], i.e. the mixture Helmholtz residual energy is given as
the contribution of an ECS term plus a correction term which is a
temperature- and density-dependent mixing rule in terms of local
compositions, which are, in turn, calculated from a coordination
number model for square-well fluids. Unlike the model of [1], in
which the correction term depended on temperature and density
and the density functionality was linear, in this work the correction
term depends on the mixture reduced temperature and density and
the density functionality is quadratic. The rationale for this device is
twofold: the correction term is more flexible as the reducing func-
tions for temperature and density are dependent on composition by
means of a mixture model and the use of a quadratic density func-
tion allows for the whole model to render second virial coefficients
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that are formally quadratic in composition. Although these features
yield small improvements in absolute numerical terms, which are
nonetheless significant given the very high accuracy of this kind
of models, they are important technical and formal advantages
of this model. As a result, the new model performs very satisfac-
torily with respect to the model of [1] and, more importantly, it
improves on the results of that model to make them more compa-
rable to the results of the two reference models of [5] over ranges as
wide as 60 ≤ T/K ≤ 1500 and p/MPa ≤ 228 for volumetric, caloric and
vapour–liquid equilibrium (VLE) properties of air and the related
systems (binary mixtures and pure components).

As the performance of model proposed herein will be exten-
sively compared to that of the two models published in [5], it is
convenient to review how those two models were constructed. The
reference EoS is a state-of-the-art multiparameter model for the
Helmholtz energy with 3 adjustable coefficients for the ideal-gas
contribution and 19 adjustable coefficients for the residual part.
The reducing parameters are the temperature and density at the
maxcondentherm and the reference EoS was fitted to densities,
isochoric heat capacities, speeds of sound and second virial coef-
ficients data sets of air. In the Helmholtz energy mixture model
the ideal-mixture part incorporates residual Helmholtz energy con-
tributions for the pure components involved, which are given by
reference equations of state, and the excess contribution involves
five adjustable parameters. The reducing parameters are given by
mixing rules with another six adjustable parameters and the mix-
ture model was fitted to densities and saturation pressures of the
(N2 + O2), (N2 + Ar) and (O2 + Ar) systems.

2. Theory

Given that the scope of this work is to extend the application
of a model reported previously [1], the theoretical background is
given summarily.

2.1. Extended corresponding states theory

The corresponding states condition for a mixture is defined [11]
as

Zx(T,�) = Z0
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Thus, the mixture properties are equated to those of a single
hypothetical fluid. In Eqs. (1) and (2), Z is the compression factor,
˚res is the dimensionless residual Helmholtz energy, the super-
script ‘x’ indicates mixture properties, the subscript ‘0’ denotes the
reference fluid and the mixture scaling parameters fx and hx are
given by one-fluid mixing rules:

hx =
∑
i

∑
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xixjhij (3)
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The unlike scaling parameters fij and hij are given by the con-
ventional combining rules

fij = �ij(fiifjj)1/2 (5)
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where �ij and �ij are binary interaction parameters and fii and hii
are given by
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)
�ii(Tr, �r) (7)

and

hii =
(
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)
ϕii(Tr, �r), (8)

in which �ii and ϕii are temperature- and density-dependent pure-
component shape factors and the subscript ‘r’ indicates reduced
properties.

2.2. Local composition theory

The number of molecules Nji of species j surrounding any
molecule of species i is readily given by the radial distribution func-
tion provided that a suitable model intermolecular potential is used
to calculate the pair correlation function gji(r) between species i and
j. The square-well (SW) intemolecular potential model is quite suit-
able for this purpose because it is easier to use than other model
intermolecular potentials while it retains the basic qualitative fea-
tures of the “true” intermolecular potential and it allows for the
same cut-off distance Lji to be used for all the components in a
mixture. The definition of the SW potential is given by

uij(r) =
{∞, r ≤ �ij

−εji, �ij < r < 	�ij
0, r ≥ 	�ij

(9)

where 	�ij is the width of the potential well which serves as the
obvious cut-off distance because beyond that uij(r) = 0, � is the
molecular diameter and −ε is the potential well depth. If it is
assumed that	 is the same for all the mixture components, Nji given
by the radial distribution function up to the first coordination shell
is given by

Nji(Lji) = 4
�n,j

∫ 	�ji

0

gji(r)r
2 dr. (10)

Local composition (LC) models are usually defined in terms of
the ratio between the local mole fraction of molecules j around
molecules i to the local mole fraction of molecules i surrounding
molecules i. The local composition of molecules of species j sur-
rounding any molecule of species i is defined as

xji =
Nji∑
kNki

. (11)

Here, the total number of molecules surrounding any central
molecule of species i, or total coordination number of species i, is
Nci =

∑
kNki.

LC models must comply with conditions regarding the low-
density behaviour and the invariance of the combinatory counting
of species. In the low-density limit it is known [12] that
lim�→0 gji(r) = exp(−uji(r)/kBT), so that from Eq. (9) and carrying
out the integration of Eq. (10), the result is
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Here, �n,j = xj�n, where xj is the bulk mole fraction of component
j and �n is the number density of the mixture. Therefore, the LC
model can be expressed as
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It is clear, then, that in the low-density limit the mixture would
not be random, i.e. xji/xii /= xj/xi. This is due to the finite value of the
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