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a  b  s  t  r  a  c  t

The  use  of  digital  PCR  for quantification  of  nucleic  acids  is  rapidly  growing.  A  major  drawback  remains  the
lack  of  flexible  data  analysis  tools.  Published  analysis  approaches  are  either  tailored  to  specific  problem
settings  or fail  to take  into  account  sources  of  variability.  We  propose  the  generalized  linear  mixed  models
framework  as  a flexible  tool  for  analyzing  a wide  range  of  experiments.  We also  introduce  a  method
for  estimating  reference  gene  stability  to improve  accuracy  and  precision  of  copy  number  and  relative
expression  estimates.  We  demonstrate  the  usefulness  of  the  methodology  on  a complex  experimental
setup.

©  2016  The  Author(s).  Published  by Elsevier  GmbH.  This  is  an  open  access  article  under  the CC
BY-NC-ND  license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The number of publications on digital PCR (dPCR) have markedly
increased during the last decade, with a rapid growth of publi-
cations in the field of biomedical sciences in recent years. This
adoption has in part been possible due to an increase of com-
mercially available, user-friendly instruments [1,2] and is further
stimulated by positive reports on dPCR demonstrating the advan-
tages over quantitative PCR (qPCR) [3], particularly for applications
such as low-level quantification [4,5], absolute quantification [4,5]
and copy number variation (CNV) determination [6].

Despite the advantages and increasing popularity of dPCR and
as a consequence of the technique still being in its infancy, one
major drawback of dPCR remains the lack of dedicated data analysis
tools taking full advantage of the specific digital nature of the data.
Most published papers rely on data-analysis software provided by
hardware manufacturers. These software suites are typically black-
box tools providing the user with a limited amount of information
on the algorithms. They furthermore do not allow the user to
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analyze more complicated experimental setups such as the correct
use of technical replicates or the use of multiple reference loci for
determining CNVs, even though such approaches may  be advisable
[7–9].

Although several papers have been published that propose data
analysis methods, these methods have been developed to analyze
very specific experimental setups. For example, Whale et al. [6] and
Dube et al. [10] developed ad hoc methods for calculating CNVs, but
these methods can only be used to calculate CNVs using a single
reference locus and do not take into account interreplicate vari-
ability. Extending these methods to cope with other experimental
setups would require significant work, tailored to each of these spe-
cific designs. A major difficulty is the correct estimation of standard
errors and confidence intervals.

In this paper, we detail how the established generalized linear
mixed model (GLMM)  framework [11] can be used to analyze dPCR
data from a wide range of experimental setups, ranging from simple
experiments such as absolute quantification to complicated studies
such as CNV estimation with multiple reference loci normalization
and handling of variable numbers of technical replicates, while cor-
rectly accounting for various sources of variability. The basis of this
GLMM framework has recently also been described by Dorazio and
Hunter [12]. We  argue that known sources of variability should be
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accounted for and that the approach of pooling counts of technical
replicates used for analysis by Dorazio and Hunter [12] (among oth-
ers, e.g. Yu et al. [13]) may  lead to incorrect estimation of standard
errors and confidence intervals.

Further, a novel approach for selecting stable reference loci for
CNV studies from a pool of candidate reference loci is developed
and successfully applied. An approach for reference gene selection
in relative expression experiments is also suggested.

To demonstrate the flexibility of the approach, our methodology
is used to analyze a dataset consisting of droplet digital PCR (ddPCR)
data for 14 individuals who have been screened for chromosomal
abnormalities using 14 genes on 6 chromosomes. The performance
in terms of accuracy and precision is evaluated for calculating CNVs
using both a single reference locus and multiple reference loci.

2. Materials and methods

2.1. Absolute quantification

dPCR splits a sample mixture into partitions. Each of these par-
titions is subsequently called as containing target nucleic acid, or
having no target nucleic acid. A positive signal thus indicates that
one or more target copies may  be present. As a consequence of the
random partitioning of copies, the number of copies in a partition is
assumed to follow a Poisson distribution with parameter � which
has the interpretation of the average number of copies per parti-
tion. If Y∗

j
denotes the unobserved number of copies in partition j

(j = 1, . . .,  J, with J the number of partitions), then we  can write the
observed digital outcome as the binary variable Yj:

Yj = min(Y∗
j , 1) =

{
0 if Y∗

j = 0

1 otherwise.
(1)

Having observed the digital outcomes, the � parameter of the
Poisson distribution can be estimated from the probability of zero
copies, relying on the probability mass function of the Poisson dis-
tribution (Eqs. (2) and (3)):

P{Y∗
j = 0} = �0

0!
exp(−�) = exp(−�) (2)

� = − log P{Y∗
j = 0} = − log P{Yj = 0} (3)

The final equality in Eq. (3) follows from the construction of the
binary outcomes (Eq. (2)). Since a probability of a binary event can
be estimated from simple counts, an estimate of � is given by

�̂ = − log
(

number of negative partitions
total number of partitions

)
. (4)

�̂ can also be obtained using a Generalized Linear Model (GLM).
The GLM for the unobserved counts Y∗

j
is specified by a Poisson

distribution with mean � related to a parameter ˇ0 through a log-
link function,

log � = ˇ0. (5)

Using Eq. (3), the observed binary outcomes Yj can be described by
a binomial distribution with probabilities

P{Yj = 0} = P{Y∗
j

= 0} = exp(−�)

= exp(− exp(ˇ0))

P{Yj = 1} = P{Y∗
j

> 0} = 1 − exp(−�)

= 1 − exp(− exp(ˇ0)).

(6)

Eqs. (6) state a GLM for a binomial distribution with a comple-
mentary log-log link. The more conventional model formulation
is:

log(− log(P{Yj = 0})) = ˇ0, (7)

where ˇ0 is the same as in Eq. (5). Since the digital outcomes Yj are

observed, GLM software can be used for estimating ˇ0. If ˆ̌ 0 denotes
the estimate, an estimate of � is then given by

�̂ = exp( ˆ̌ 0). (8)

Using Eq. (4) or Eq. (8) will result in the same estimate for �.
Assuming a constant volume of the partitions, say Vpartition, the

concentration can be estimated from the average number of copies
per partition (Eq. (9)):

ĉ = �̂

Vpartition
. (9)

To obtain a reliable estimate of the concentration, an experiment
is typically replicated. We  now define Y∗

ij
as the number of copies

in partition j of replicate i (j = 1, . . .,  Ji, with Ji the number of parti-
tions in replicate i, i = 1, . . .,  I, with I the number of replicates). As
before, the counts are not observable, but upon applying equation
(1), binary outcomes Yij can be calculated. To take the replicate vari-
ability into account, we  introduce a random effect for the replicate
in the Poisson model. Within a replicate, the counts are still Pois-
son distributed. The statistical model is formulated hierarchically.
In particular, within a replicate:

Y∗
ij | Ri∼Poisson(�i) (10)

where

log �i = ˇ0 + Ri, (11)

with Ri the effect of replicate i on the Poisson mean. These replicate
effects Ri are described by a normal distribution,

Ri∼N(0, �2). (12)

This model implies that the random effect terms are exchange-
able, which is warranted if replicates are considered as a random
sample from a larger population of potential replicates (see
Supplementary Material 4, Section 4).

The model results again in a binomial regression model with a
complementary log-log link for the observed digital outcomes. In
particular, within a replicate

log(− log(P{Yij = 0 | Ri})) = ˇ0 + Ri, (13)

with ˇ0 and Ri as before. The model is a special case of a GLMM [11].
Statistical software is available for estimating the model param-
eters (e.g. R [14], an environment often used for analysis of PCR
experiments [15]), including random effect variances [16].

The objective is to estimate the mean number of copies, aver-
aged over all replicates, i.e. E{Y∗

ij
} is the quantity of interest for

absolute quantification. Statistical theory (Supplementary Material
4, Section 1) gives

E{Y∗
ij } = exp(ˇ0 + 0.5�2). (14)

From the estimate of ˇ0 (say ˆ̌ 0), the estimate of the variance
�2 of the random effect (say �̂2) and from Eq. (9) a concentration
estimate can subsequently be calculated as

ĉ = exp( ˆ̌ 0 + 0.5 �̂2)
Vpartition

. (15)

The statistical software also gives the estimated standard
errors of the estimates ˆ̌ 0 which can be used for the calcula-
tion of an approximate confidence interval of the concentration
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