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SUMMARY

Proteasomes and lysosomes constitute the major
cellular systems that catabolize proteins to recycle
free amino acids for energy and new protein
synthesis. Tripeptidyl peptidase II (TPPII) is a
large cytosolic proteolytic complex that functions
in tandem with the proteasome-ubiquitin protein
degradation pathway. We found that autosomal
recessive TPP2 mutations cause recurrent infec-
tions, autoimmunity, and neurodevelopmental delay
in humans. We show that a major function of TPPII
in mammalian cells is to maintain amino acid levels
and that TPPII-deficient cells compensate by
increasing lysosome number and proteolytic activ-
ity. However, the overabundant lysosomes derange
cellular metabolism by consuming the key glycolytic
enzyme hexokinase-2 through chaperone-mediated
autophagy. This reduces glycolysis and impairs
the production of effector cytokines, including IFN-
g and IL-1b. Thus, TPPII controls the balance
between intracellular amino acid availability, lyso-
some number, and glycolysis, which is vital for
adaptive and innate immunity and neurodevelop-
mental health.

INTRODUCTION

Protein degradation occurs continuously within cells. This

removes misfolded or damaged proteins and generates free

amino acids for protein synthesis or energy production via gluta-

minolysis (Schutz, 2011). Mammalian cells utilize two principal

pathways: proteasomes, which are protein complexes that

recognize and degrade ubiquitinated proteins within the cytosol,

and lysosomes, which aremembrane-bound organelles contain-

ing acid hydrolases that are fed substrate by endosomal

and autophagic vesicles (Ciechanover, 2005). Evidence sug-

gests that these pathways can cross-compensate to maintain

balanced proteolysis and amino acid homeostasis (Korolchuk

et al., 2010). In both pathways, proteins are first degraded into

long oligopeptides from which N-terminal tripeptides are then

trimmed by tripeptidyl peptidases (TPP). These tripeptides are

further cleaved by dipeptidyl peptidases and aminopeptidases

to generate free amino acids (Tomkinson, 1999).

There are two types of TPP in eukaryotic cells, TPPI and TPPII.

TPPI is a lysosomal acid protease, whereas TPPII is a cytosolic

protease that forms a giant multisubunit complex acting down-

stream of proteasomes (Schönegge et al., 2012; Tomkinson,

1999). By trimming long oligopeptides, TPPII was thought

to be principally important in producing antigenic peptides

that bind to major histocompatibility complex (MHC) class I

molecules for presentation to CD8 T cells (Reits et al., 2004).

However, the development and function of CD8 T cells was
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largely unaffected by genetic deletion of Tpp2 in mice, even

during experimental viral infections (Kawahara et al., 2009). By

contrast, other TppII-deficient mouse strains exhibited either

embryonic lethality (McKay et al., 2007) or an immunosenescent

phenotype characterized by declining thymic output and

progressive loss of CD4 and CD8 T cells (Huai et al., 2008).

Thus, the physiological role for TPPII in proteolysis, amino acid

homeostasis, and metabolism in mammals remains obscure.

Furthermore, although humans with loss-of-function mutations

in TPP1 develop a lysosomal storage disease called classical

late-infantile neuronal ceroid lipofuscinosis (Tomkinson, 1999),

whether TPP2 mutations cause human disease is unknown.

In the immune system, innate and adaptive cells quickly and

coordinately respond to invading pathogens and inflammatory

signals. The biosynthetic and bioenergetic demands of the

responding leukocytes are extreme because of the sudden

requirements for cell growth, trafficking, proliferation, and

effector functions. To support this burst of anabolic activity,

cellular metabolism radically reorients toward aerobic glycolysis

(MacIver et al., 2013; Pearce and Pearce, 2013). Although less

efficient in generating ATP, glycolysis generates intermediate

metabolites that support biosynthetic pathways for effector

functions, including cytokine production (Chang et al., 2013;

Shi et al., 2011). It is thus not surprising that metabolic reprog-

ramming is an integral part of leukocyte activation and that

a complex regulatory network links nutrient availability with a

concerted immune response. Unraveling this complexity is

important because of the potential to target metabolic pathways

for modulating pathological immune responses. To this end,

we have studied patients with a metabolic immunodeficiency

caused by TPP2 mutations.

RESULTS

Human Disease Caused by Loss of TPPII Activity
We identified four patients from two families, affected by com-

bined immunodeficiency, severe autoimmunity, and develop-

mental delay (Figure 1A, Table 1, and Data S1 available online),

with biallelic loss-of-function mutations in TPP2. Except for P2,

who was diagnosed by screening in early infancy, patients

presented in early childhood with recurrent bacterial and viral

infections of the respiratory tract and middle ear. All three

tested patients showed markedly decreased circulating T, B,

and natural killer lymphocytes (Figure S1A), including severely
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Figure 1. Autosomal Recessive Loss-of-Function Mutations in Human TPPII Deficiency

(A) Patients’ pedigrees.

(B) Sanger sequencing showing the mutations.

(C) Immunoblots for TPPII in T cells from P1 and P2 (left) or fibroblasts from P3 and P4 (right).

(D) TPPII enzymatic activity in fibroblast lysates from two healthy controls, P3 and P4, incubated for the indicated minutes without (–) or with (+) added TPPII

inhibitor BUTA.

(E) Structural representations of TPPII highlighting G500D (red spheres) and the active site (purple spheres). Shown are ribbon representations of multimeric

spindle and monomer and surface representation of dimer of yellow and green monomers (Schönegge et al., 2012).

Experiments were repeated at least twice for (C) and three times for (D). See also Figure S2.
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