
Resource

Expansion of Biological Pathways
Based on Evolutionary Inference
Yang Li,1,2,6 Sarah E. Calvo,1,3,6 Roee Gutman,4 Jun S. Liu,2,* and Vamsi K. Mootha1,3,5,*
1Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
2Department of Statistics, Harvard University, Cambridge, MA 02138, USA
3Broad Institute, Cambridge, MA 02141, USA
4Department of Biostatistics, Brown University, Providence, RI 02912, USA
5Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
6Co-first author

*Correspondence: jliu@stat.harvard.edu (J.S.L.), vamsi@hms.harvard.edu (V.K.M.)

http://dx.doi.org/10.1016/j.cell.2014.05.034

SUMMARY

The availability of diverse genomesmakes it possible
to predict gene function based on shared evolu-
tionary history. This approach can be challenging,
however, for pathways whose components do not
exhibit a shared history but rather consist of distinct
‘‘evolutionary modules.’’ We introduce a computa-
tional algorithm, clustering by inferred models of
evolution (CLIME), which inputs a eukaryotic species
tree, homology matrix, and pathway (gene set) of in-
terest. CLIME partitions the gene set into disjoint
evolutionary modules, simultaneously learning the
number of modules and a tree-based evolutionary
history that defines each module. CLIME then ex-
pands each module by scanning the genome for
new components that likely arose under the inferred
evolutionary model. Application of CLIME to �1,000
annotated human pathways and to the proteomes
of yeast, red algae, andmalaria reveals unanticipated
evolutionary modularity and coevolving compo-
nents. CLIME is freely available and should become
increasingly powerful with the growing wealth of eu-
karyotic genomes.

INTRODUCTION

Biological pathways and complexes represent the fruits of

extensive pruning, expansion, and mutation that have occurred

over evolutionary timescales. For example, mitochondria repre-

sent a defining feature of all eukaryotes, yet an estimated one-

half of the organelle’s ancestral machinery has been lost (Vafai

and Mootha, 2012), and the remaining machinery varies signifi-

cantly across eukaryotic taxa, with many new lineage-specific

innovations. Similarly, cilia were likely present in the last com-

mon eukaryotic ancestor, though most plants and fungi lost

this organelle completely, whereas nematodes have specifically

lost motile cilia. Charting the evolutionary history of modern-day

pathways and complexes can help to define the taxonomic

distribution of pathways and thereby highlight model organ-

isms for experimental studies. Such evolutionary analyses may

also teach us about the environmental niches within which

they evolved. Importantly, correlated gains and losses can help

to predict the function of unstudied genes and also reveal

alternative functions even for genes considered to be well

characterized.

Pioneering work introduced the concept of ‘‘phylogenetic

profiling’’ to chart the phylogenetic distribution of genes and

relate them to each other (Pellegrini et al., 1999). In this

approach, a binary vector of presence and absence of a given

gene across sequenced organisms is used to predict function

of genes sharing a similar profile, based on the Hamming dis-

tance (Hamming, 1950). A number of different computational

methods have been developed (Kensche et al., 2008) and have

been applied successfully to predict components for prokaryotic

protein complexes (Pellegrini et al., 1999); phenotypic traits

like pili, thermophily, and respiratory tract tropism (Jim et al.,

2004); cilia (Li et al., 2004); mitochondrial complex I (Ogilvie

et al., 2005); and small RNA pathways (Tabach et al., 2013).

Although many phylogenetic profiling algorithms are now

available, several features limit their utility (Kensche et al.,

2008). First, most existing methods compare an input gene to

a query gene one at a time—which cannot take advantage of

patterns only discernible by analyzing a collection of input genes.

Second, most methods do not explicitly model errors in a gene’s

phylogenetic profile, each of whichmay be individually noisy due

to the inherent challenges of genome assembly, gene annota-

tion, and detection of distant homologs (Trachana et al., 2011).

Third, with a few notable exceptions (Barker and Pagel, 2005;

von Mering et al., 2003; Vert, 2002; Zhou et al., 2006), most

existing algorithms do not take into account the phylogenetic

tree of the input species but assume independence across spe-

cies and hence are highly sensitive to the choice of organisms

selected. Available tree-based methods are computationally

intensive and not readily scalable to large genomes (Barker

et al., 2007; Barker and Pagel, 2005).

Because most existing phylogenetic profiling methods are

designed to operate on single genes, they cannot be readily

extended to biological pathways, where each member may

have different phylogenetic profiles. Our previous experience
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with mitochondrial complex I illustrates this point (Pagliarini

et al., 2008). Human complex I is a macromolecular machine

consisting of 44 structural subunits. We observed that these

subunits did not share a single, common history of gains and

losses across eukaryotic evolution but clustered into several

distinct evolutionary modules. One ‘‘ancestral’’ module con-

sisted of 14 core subunits that were present in bacteria and in

humans yet lost independently four times in eukaryotic evolution,

whereas other modules consisted of recent animal or vertebrate

innovations. By first identifying the ‘‘ancestral’’ module, we could

scan the human genome to identify additional genes sharing the

same evolutionary history. Five of these genes have since been

shown to encode complex I assembly factors that are mutated

in inherited complex I deficiencies (Mimaki et al., 2012).

Our previous analysis suggested that biological pathways, as

we conceive of them, represent mosaics of gene modules, each

sharing a coherent pattern of evolutionary gains and losses. If

such modules can be detected accurately, they can then be

‘‘expanded’’ to identify new components. The major challenge

in accurate detection is that the number and histories of modules

have to be inferred simultaneously.

Here, we introduce a method that generalizes this approach in

a statistically principled manner, using a Bayesian mixture

of tree-based hidden Markov models. Our method, called

clustering by inferredmodels of evolution (CLIME), first partitions

an input gene set into modules of genes that exhibit coherent

evolutionary histories and then expands each module with new

genes sharing the same evolutionary history. CLIME is distinct

from existing approaches in that it (1) is a tree-based method

for partitioning an input set of related genes, (2) automatically

learns the number of distinct evolutionary modules in the input

set, and (3) leverages information from the entire input gene

set to more reliably predict new genes that have arisen with a

shared pattern of evolutionary gains and losses.

We systematically applied CLIME to over 1,000 human com-

plexes and pathways, two human cellular organelles (cilia and

mitochondria), and three entire genomes (red algae, yeast, and

the malaria parasite). The results, the software, and an online

analysis portal are freely available at http://www.gene-clime.org.

RESULTS

CLIME: An Algorithm for Clustering Genes Based on
Inferred Models of Evolution
The CLIME algorithm partitions genes based on inferred models

of evolution (Figure 1). CLIME accepts three user-defined inputs:

(1) a binary species tree; (2) a phylogenetic profile matrix, X,

defining the presence or absence of all genes in a given organism

across all species in the tree; and (3) an input gene setG. CLIME

partitions the input set G into disjoint evolutionarily conserved

modules (ECMs) using a Bayesian mixture model to infer simul-

taneously the number of ECMs, the evolutionary model for each

ECM, and gene’s membership for each ECM. The algorithm next

creates an ECM expansion set, ECM+, that includes other genes

in the genome that are likely to have arisen under the ECM’s

inferred model of evolution compared to a null model.

CLIME models the evolution of an individual gene using a

tree-based hidden Markov model (HMM), with the assumption

that each gene has a single gain event in evolution followed by

zero or more loss events on the species tree (Figures 2A and

2B). CLIME does not consider branch lengths, only the tree

topology. For each gene g, the HMM of evolution is based on

the presence/absence profile across S living species (Xg, the

observed states). The HMM contains 2S-1 hidden states (Hg)

corresponding to the true presence/absence of that gene in all

living and extinct species (Figure 2B). The model includes

a user-defined observation error parameter ε (default 0.01)

representing the probability that the observed data are errors

compared to the true hidden presence/absence (e.g., incom-

plete genome assembly/annotation). CLIME infers a tree-based

HMM to model the evolution of each gene separately, as well

as to model the evolution of each ECM. The evolutionary model

of each gene g is represented by a single gain branch (lg)

and a vector of branch-specific loss probabilities of its ECM

(qk)—inferred at the preprocessing step and partition step,
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Figure 1. Schematic Overview of CLIME

CLIME partitions an input set of genes into evolutionarily conserved modules

(ECMs) and predicts additional genes sharing the same inferred model of evo-

lution. Input: species tree, an input gene set (G), anda phylogeneticmatrix (X) for

all genes in a reference organism showing presence (green) or absence (white)

across all extant species in the tree. For displaypurposes, a separate blue/white

matrix shows the profiles of genes inG, which are a subset of X. Partition: input

genesG arepartitioned intoKdistinctECMs, using aBayesianmixtureofHMMs

to simultaneously infer the number of ECMs and the shared evolutionary history

of each ECM. Each ECM ismodeled by a tree-structured HMMwith an inferred

gain branch (blue) and branch-specific probabilities of gene loss (red). Expan-

sion: each ECM is expanded by identifying genes within the genome that are

more likely to have evolved from the ECM’s model of evolutionary history

compared to a null model of evolution, scored by the log-likelihood ratio (LLR).

Output: K disjoint ECM clusters and associated ECM+ expansions.

See also Figures S1, S2, S3, S4, and S5.
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