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SUMMARY

The fungal meningitis pathogen Cryptococcus neo-
formans is a central driver of mortality in HIV/AIDS.
We report a genome-scale chemical genetic data
map for this pathogen that quantifies the impact of
439 small-molecule challenges on 1,448 gene knock-
outs. We identified chemical phenotypes for 83% of
mutants screened and at least one genetic response
for each compound.C. neoformans chemical-genetic
responses are largely distinct from orthologous pub-
lished profiles of Saccharomyces cerevisiae, demon-
strating the importance of pathogen-centered
studies. We used the chemical-genetic matrix to pre-
dict novel pathogenicity genes, infer compound
mode of action, and to develop an algorithm, O2M,
that predicts antifungal synergies. These predictions
were experimentally validated, thereby identifying
virulence genes, a molecule that triggers G2/M arrest
and inhibits the Cdc25 phosphatase, and many com-
pounds that synergize with the antifungal drug flu-
conazole. Our work establishes a chemical-genetic
foundation for approaching an infection responsible
for greater than one-third of AIDS-related deaths.

INTRODUCTION

Invasive fungal infections are notoriously difficult to diagnose

and treat, resulting in high mortality rates, even with state-of-

the art treatments. The three most common pathogenic agents

are Cryptococcus neoformans, Candida albicans, and Asper-

gillus fumigatus (Mandell et al., 2010). These organisms are

opportunistic fungi that prey on individuals with varying degrees

of immune deficiency. Susceptible patient populations include

premature infants, diabetics, individuals with liver disease,

chemotherapy patients, organ transplant recipients, and those

infectedwith HIV (Mandell et al., 2010). Compounding the clinical

challenge is the slow pace of antifungal drug development: only

a single new class of drugs (the echinocandins) has been

approved for use in the United States in the last 30 years (Butts

and Krysan, 2012; Mandell et al., 2010; Roemer et al., 2011).

Fungal infections are estimated to cause 50% of deaths

related to AIDS and have been termed a ‘‘neglected epidemic’’

(Armstrong-James et al., 2014). The fungus chiefly responsible

for deaths in this population isC. neoformans (Armstrong-James

et al., 2014).C. neoformans is an encapsulated basidiomycetous

haploid yeast distantly related to Saccharomyces cerevisiae and

Schizosaccharomyces pombe. A 2009 CDC study estimated

that �1 million infections and �600,000 deaths annually are

caused by C. neoformans, exceeding the estimated worldwide

death toll from breast cancer (Lozano et al., 2012; Park et al.,

2009). C. neoformans is widespread in the environment and

exposure occurs through inhalation of desiccated yeast or

spores (Heitman et al., 2011). In immunocompromised patients,

C. neoformans replicates and disseminates, causing meningo-

encephalitis that is lethal without treatment (Heitman et al.,

2011). Induction therapy involves flucytosine and intravenous in-

fusions of amphtotericin B (Loyse et al., 2013). Both drugs are

highly toxic, difficult to administer, and neither is readily available

in the areas with the highest rates of disease. The current recom-

mendation for Cryptococcosis treatment is at least a year of ther-

apy, which is difficult to accomplish in resource-limited settings

(WHO, 2011). Thus, as is the case with infections caused by

other fungal pathogens, effective treatment of cryptococcal in-

fections is limited by the efficacy, toxicity, and availability of cur-

rent pharmaceuticals.

We implemented chemogenomic profiling to approach the

challenges of therapeutic development in C. neoformans. This

method involves the systematic measurement of the impact of

compounds on the growth of defined null mutants to produce

a chemical-genetic map. Such a map represents a quantitative

description composed of numerical scores indicative of the

growth behavior of each knockout mutant under each chemical

condition. Cluster analysis of the growth scores for large
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numbers of mutants under many chemical conditions can reveal

genes that function in the same pathway and even those whose

products are part of the same protein complex (Collins et al.,

2007; Parsons et al., 2004; Parsons et al., 2006). In addition,

the identity of genes whose mutation produce resistance or

sensitivity is useful for uncovering compound mode of action

(MOA) (Hillenmeyer et al., 2008; Jiang et al., 2008; Nichols

et al., 2011; Parsons et al., 2006; Xu et al., 2007; Xu et al.,

2009). Large-scale studies have been restricted to model organ-

isms for which gene deletion collections have been constructed,

namely S. cerevisiae, S. pombe, and Escherichia coli K12 (Hillen-

meyer et al., 2008; Nichols et al., 2011; Parsons et al., 2006).

However, as none of these are pathogens, the extent to which

the resulting insights translate to pathogenic organisms is un-

known. A variation on chemogenomic profiling, chemically-

induced haploinsufficiency, was first developed using a diploid

heterozygote gene deletion library S. cerevisiae to identify com-

pound MOA. This method, which identifies genes that impact

compound sensitivity based on a two-fold gene dosage change,

is suited for diploid organisms and has been used in the path-

ogen C. albicans (Jiang et al., 2008; Xu et al., 2007; Xu et al.,

2009).

We report here the generation of a large-scale chemogenomic

map for C. neoformans using defined, commonly available

knockout mutants, assessments of data quality, and extensive

experimental verification. Comparisons of the C. neoformans

profile with two large-scale published profiles from

S. cerevisiae revealed that for most types of compounds, the

chemical-genetic interactions are distinct even among ortholo-

gous genes, emphasizing the importance of pathogen-focused

investigation. We used nearest-neighbor analysis to predict

new genes involved in polysaccharide capsule formation and

infectivity, which we validated through experiment. We also uti-

lized genetic responses to predict the G2/M phase of the cell

cycle and the Cdc25 phosphatase as targets of a thiazolidone-

2,4-dione derivative, which we confirmed in vivo and in vitro.

Finally, because of the unmet need for improved antifungal

drug efficacy, we developed a new algorithm, O2M, to predict

new compound synergies based on the profiles of pairs known

to be synergistic. Experimental tests demonstrate that the

method performs vastly better than randomexpectation, thereby

enabling the identification of synergistic compound combina-

tions. Our studies establish a chemical-genetic foundation to

approach the biology and treatments of C. neoformans infec-

tions, which are responsible for more than one-third of HIV/

AIDS deaths worldwide.

RESULTS

A Chemical-Genetic Map of C. neoformans

We assembled 1,448 C. neoformans gene deletion strains (Chun

et al., 2011; Liu et al., 2008) (Table S1 available online), corre-

sponding to a substantial fraction of 6,967 predicted

C. neoformans genes (Janbon et al., 2014), and a collection of

compounds for screening (Table 1). Compounds were selected

based on cost and literature evidence that they could inhibit

the growth of fungi. Where feasible, compounds were chosen

that are known to target specific biological processes. For

each small molecule, we determined an approximate minimum

inhibitory concentration (MIC) in agar, then measured growth

of the knockout collection on each small molecule at 50%,

25%, and 12.5%MIC using high density agar plate colony arrays

and a robotic replicator. We then measured the size of each col-

ony using flatbed scanning and colony measurement software

(Dittmar et al., 2010). We performed a minimum of four replicate

colony measurements for each mutant-condition pair. Plate-

based assays are subject to known nonbiological effects, such

as spatial patterns. To mitigate these errors, a series of correc-

tive measures were implemented using approaches described

previously, including manual filtration of noisy data, spatial effect

normalization and machine learning-based batch correction

(Baryshnikova et al., 2010). In addition, the data for each deletion

mutant and compound was centered and normalized. Each

mutant-small molecule combination was assigned a score with

positive scores representing relative resistance and negative

scores representing compound sensitivity (Table S2). A global

summary of the processed data organized by hierarchical clus-

tering is shown in Figure 1A.

The importance and validity of the computational corrections

is shown in Figures 1B and S1. We estimated how reproducible

the chemical-genetic profiles were by calculating the correlation

scores for data obtained for different concentrations of the same

small molecule (purple). This measures the degree of overlap

between the overall chemical-genetic profiles, which are them-

selves each composed of a score for each mutant-small mole-

cule combination. We found significant correlation (p = 2.67 3

10�176) between data obtained for different concentrations of

the same small molecule compared to those between profiles

generated by data set randomization, suggesting significant

reproducibility. Moreover, correlation scores between chemi-

cal-genetic profiles of different concentrations of different com-

pounds (gray) are centered at approximately 0 (Figure 1B). This

difference in correlation scores is apparent even when

comparing experiments performed on the same day, when

spurious batch signal can contribute to false positives (Baryshni-

kova et al., 2010). Our batch-correction algorithms resulted in

same-batch screening data with strong positive correlation

scores for the same compounds but correlation scores close

to zero for different compounds (Figure S1), demonstrating suc-

cessful removal of spurious signal (Baryshnikova et al., 2010).

We compared chemical-genetic profiles between compounds

in the azole family (Figure 1C). Despite the fact that the azoles

tested include those of diverse uses, from agricultural pesticides

to FDA-approved drugs (Table 1), many exhibit a significant pro-

file correlation (p = 2.82 3 10�6), further indicating significant

signal in the data. As a final assessment, we performed hyper-

geometric testing across all compounds to determine whether

the same sensitive gene knockouts (defined by Z < �2.5) are

identified at different concentrations of the same compounds.

Using a Bonferonni-corrected p value cutoff, nearly all com-

pounds display significant overlap of responsive genes at

different concentrations (Figure 1D).

We assigned at least one phenotype (sensitivity or resistance

to a compound) to 1,198 of 1,448 mutants (Figure 1E, Tables S2,

S3, and S4). Of these, 855 exhibit one to ten phenotypes, while

remaining 343 displayed from 11 to 146 phenotypes. Gene
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