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SUMMARY

Identification of driver mutations in human diseases
is often limited by cohort size and availability of
appropriate statistical models. We propose a frame-
work for the systematic discovery of genetic alter-
ations that are causal determinants of disease, by
prioritizing genes upstream of functional disease
drivers, within regulatory networks inferred de novo
from experimental data. We tested this framework
by identifying the genetic determinants of themesen-
chymal subtype of glioblastoma. Our analysis uncov-
ered KLHL9 deletions as upstream activators of
two previously established master regulators of the
subtype, C/EBPb and C/EBPd. Rescue of KLHL9
expression induced proteasomal degradation of C/
EBP proteins, abrogated the mesenchymal signa-
ture, and reduced tumor viability in vitro and in vivo.
Deletions of KLHL9 were confirmed in > 50% of
mesenchymal cases in an independent cohort, thus
representing the most frequent genetic determinant
of the subtype. The method generalized to study
other human diseases, including breast cancer and
Alzheimer’s disease.

INTRODUCTION

Identification of somatic mutations and germline variants that

are determinants of cancer and other complex human dis-

eases/traits (drivermutations) ismostly performed on a statistical

basis, using models of genomic evolution (Frattini et al., 2013) or

mutational bias (Lawrence et al., 2013), among others, to in-

crease the significance of individual events. Achieving appro-

priate statistical power, however, requires large effect sizes or

large cohorts due to multiple hypothesis-testing correction (Cal-

ifano et al., 2012). In addition, these approaches are not designed

to provide mechanistic insight. As a result, many disease-risk

determinants, such as apolipoprotein E, were discovered long

before they were mechanistically elucidated (Liu et al., 2013).

Network-based analyses have recently emerged as a highly

effective framework for the discovery of master regulator (MR)

genes that are functional disease drivers (Aytes et al., 2014;

Carro et al., 2010; Lefebvre et al., 2010; Piovan et al., 2013;

Sumazin et al., 2011; Zhao et al., 2009). Here, we introduce

DIGGIT (driver-gene inference by genetical-genomics and

information theory), an algorithm to identify genetic determinants

of disease by systematically exploring regulatory/signaling net-

works upstream of MR genes. This collapses the number of test-

able hypotheses and provides regulatory clues to help elucidate

associated mechanisms.

We first apply DIGGIT to identify causal genetic determinants

of the mesenchymal subtype of GBM (MES-GBM), which remain

poorly characterized despite extensive efforts (Brennan et al.,

2013; Verhaak et al., 2010). We then demonstrate its generaliz-

ability to other diseases for which matched expression and

mutational data are available.

Astrocytoma grade IV or glioblastoma (GBM) is the most com-

mon human brain malignancy and is virtually incurable, with

average survival of 12–18 months post-diagnosis (Ohgaki and

Kleihues, 2005). Gene-expression profile analysis revealed three

subtypes associated with expression of mesenchymal, prolifer-

ative, and proneural (PN) genes, respectively (Phillips et al.,

2006). Among these, mesenchymal tumors (MES-GBM) present

with the worst prognosis, as confirmed by other studies (Carro

et al., 2010; Sun et al., 2006; Cancer Genome Atlas

Research Network, 2008). Integrative analysis of expression
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and mutational data (Cancer Genome Atlas Research Network,

2008) produced a more complex stratification into PN, MES,

neural, and classic subtypes, as well as into an epigenetically

distinct subtype (G-CIMP) with the best prognosis (Verhaak

et al., 2010). Whereas non-G-CIMP PN tumors were associated

with the worst prognosis by Brennan et al. (2013), MES-GBM tu-

mors, based on the original classification, present virtually indis-

tinguishable prognosis and are�7-fold more frequent (Figure S1

available online). Thus the original MES-GBM and the newer

Non-G-CIMP PN signatures are both objective, equivalent

markers of poor prognosis.

Among the genetic alterations reported by the TCGA

Consortium (Cancer Genome Atlas Research Network, 2008),

only NF1 mutations/deletions were associated with MES-GBM

tumors (�25% of samples) (Verhaak et al., 2010), although addi-

tional rare mutations and fusion events were recently reported

(Danussi et al., 2013; Frattini et al., 2013). Thus, despite multiple

studies, the genetic determinants of MES-GBM are still largely

elusive and represent an ideal target for the new algorithm.

In Carro et al. (2010), we reported that aberrant coactivation of

the transcription factors (TFs) C/EBPb, C/EBPd, and STAT3 is

necessary and sufficient to induce mesenchymal reprogram-

ming in GBM, suggesting that this TF module represents an obli-

gate pathway or regulatory bottleneck between driver alterations

and aberrant mesenchymal program activity. We thus hypothe-

size that the genetic drivers ofMES-GBMare either among these

genes or in their upstream pathways. Use of DIGGIT to test the

hypothesis elucidated two high-frequency alterations: focal

amplification of C/EBPd and homozygous deletion of KLHL9, a

Cullin E3 ligase adaptor (Sumara et al., 2007).

To assess the algorithm’s generalizability to other diseases

and germline variants, we also applied it to breast cancer

(BRCA) and Alzheimer’s disease (AD). This identified driver alter-

ations and variants missed by genome-wide association studies

(GWASs) but validated by independent candidate-gene studies,

as well as high-probability, yet unreported events.

RESULTS

Given a set of functional disease drivers, e.g., inferred by the MR

inference algorithm (MARINa) (Aytes et al., 2014; Carro et al.,

2010), DIGGIT evaluates candidate alterations in these genes

and in their upstream regulators (see Figure 1A for a flowchart).

This is accomplished by a five-step process (Figures 1B–1F),

requiring a large set (nR200) of gene-expression profiles (hence-

forth GEPD) to assemble and analyze regulatory networks and a

large set (n R100) of sample-matched genetic-variant profiles

(henceforth GVPD). We first discuss application of this pipeline

to identify copy-number variants (CNVs) that are causal determi-

nants of the MES-GBM subtype. We then perform additional an-

alyses to show that DIGGIT generalizes to the study of germline

variants, as well as of other diseases, including BRCA and AD.

Step 1: MR Analysis
This step requires a context-specific regulatory network repre-

senting TF / target interactions (henceforth, interactome) and

a gene-expression signature of interest (i.e., a p value-ranked

list of differentially expressed genes) (input). These are analyzed

by MARINa to produce a p value-ranked list of candidate

MRs (output). Given a GEPD data set, networks can be in-

ferred using available reverse-engineering algorithms, such as

ARACNe (Basso et al., 2005). Specifically, MARINa analysis

of an ARACNe-inferred GBM network, using a MES-GBM

signature, identified six MR genes (MES-MRs), including

C/EBPb, C/EBPd, STAT3, BHLHB2, RUNX1, and FOSL2, with

C/EBPb/C/EBPd and STAT3 as synergistic MRs (Carro et al.,

2010). See Figure 1B.

Step 2: F-CNVG Analysis
Functional alterations must induce aberrant activity of their gene

products (see Figure 1C). Among copy-number alterations

(CNVGs), we thus select those whose ploidy is informative of

gene expression as candidate functional CNVs (F-CNVGs) (Tam-

borero et al., 2013) (Figure S1). This is assessed based on (1)

mutual information (MI) between copy number and expression

or (2) differential expression in wild-type (WT) versus amplified/

deleted samples (see Extended Experimental Procedures). Ana-

lyses are performed on the GEPD and sample-matched GVPD

profiles (input), independent of subtype classification, to pro-

duce a p value-ranked list of candidate F-CNVGs (output).

Analysis of 229 profile-matched GBM samples in TCGA identi-

fied 1,486 candidate F-CNVGs (p %0:05, Bonferroni corrected).

The MI test proved highly sensitive, accounting for 90% of in-

ferred F-CNVGs (Tables S1–S5) (both KLHL9 and C/EBPd were

positivebyMIanalysis),with the t test accounting for anadditional

10% of low-frequency F-CNVGs, with lowMI analysis sensitivity.

Most CNVGs (94%) were thus discarded as not informative of

gene expression (see Figure S1), suggesting no functional

contribution.Conversely, inferredF-CNVGs includedmostgenes

previously reported as GBM drivers (14/18 > 88%) (Cancer

Genome Atlas Research Network, 2008), including EGFR,

CDK4, PDGFRA, MDM2, MDM4, MET, AKT3, MYCN, PIK3CA,

CDKN2A, CDKN2C, RB1, PTEN, and NF1 (p = 1.2 3 10�10)

(Tables S1–S5). Analysis of remaining driver genes (CCND2,

CDK6, CDKN2B, PARK2) revealed that they were missed due

to either low event frequency (CDK6 < 1.3%, CCND2 < 2.2%,

PARK2 < 5.2%) or below-detection gene-expression levels

(CDKN2B).

Among the MES-MRs, only C/EBPd was inferred as a focally

amplified F-CNVG (�22% of samples), suggesting that aberrant

activity of other MES-MRs may be mediated by alterations in

their upstream regulators.

Step 3: MINDy Analysis
Next, we used the MINDy algorithm to interrogate pathways

upstream of MR genes (Wang et al., 2009). MINDy analyzes a

large GEPD, the candidate MR list (step 1), and the F-CNVG

list (step 2) (input) to identify F-CNVGs that are candidate post-

translational modulators of MR activity (independent of subtype

classification), by conditional MI analysis (Wang et al., 2009;

Zhao et al., 2009; see Extended Experimental Procedures).

This generates a p value-ranked list of candidate F-CNVGs in

pathways upstream of MR genes (output). This step dramatically

reduced the 1,486 F-CNVGs from step 1 to only 92 statistically

significant candidate MES-MR modulators (see Table S3 and

Figure 1D).
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