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a b s t r a c t

A non-linear interpretation is proposed for the vibrating wire (VW) viscometer operated with the transient
or ringdown method. This new interpretation is motivated by the necessity of having an acceptable signal
to noise ratio (SNR) such that a measurement can be performed in 1 s. A large SNR is achieved by a large
oscillation amplitude such that the requisite conditions for the linear interpretation are no longer met. We
demonstrate the applicability of a new non-linear interpretation with wires of length 40 mm and 50 mm
over a viscosity range from 0.3 to 159 mPa s where the maximum amplitude of motion is approximately
two thirds of the radius.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The long history of the vibrating wire (VW) viscometer com-
mences with Stokes’s original calculation of the drag experienced
by a cylinder oscillating normal to its axis [1]. More recently a full
solution for the VW was derived by Wakeham and coworkers for
low amplitude operation and the interpretation discussed within
has been implemented in multiple studies concerning the viscos-
ity of hydrocarbon mixtures [2,3]. This interpretation postulates
that the drag experienced by the wire is linearly dependent on the
wire’s velocity and will be referred to as the linear interpretation.
This condition is met for a wire oscillating with small amplitude
(significantly less than its radius) and frequencies sufficiently small
that convective terms are negligible [2,3]. The emf voltage sig-
nal produced by the VW can be measured with the steady state
mode using a lock-in amplifier wherein one viscosity measure-
ment requires a frequency sweep about the resonance peak, taking
approximately 1 min. The noise-rejecting capability of the lock-in
amplifier allows nanovolt signals to be measured with accuracy
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such that the VW can be operated at low amplitude. The transient
method using an impulse excitation and voltage recorder cannot
reject off-resonant frequencies as robustly as the lock-in amplifier
and as such is a measurement with a higher level of background
noise. Hence the transient method requires that the VW oscillate
with a much higher physical amplitude in order to obtain the same
SNR as the steady state approach. In the literature it is typically
reported that a series of measurements with sequentially decreas-
ing excitation is employed and the measurement of the decrement
� by a transient method is extrapolated to zero amplitude, requir-
ing about 15 min [4] The accuracy of the interpretation increases as
the amplitude is decreased because the approximations intrinsic to
the interpretation possess greater validity at low amplitude. To our
knowledge, no VW viscometer has been fabricated for commercial
implementation, and as such, there has been little need to perform
measurements rapidly [4]. For many applications a measurement
that requires even 1 min is unacceptably long, especially to a sen-
sor subjected to heterogeneous flow consisting of slugs of different
fluids.

In this manuscript we will discuss an extension of existing inter-
pretation that allows one to make a measurement in the span of 1 s
using the transient method. This builds upon the existing inter-
pretation found in the literature but includes non-linear terms to
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compensate for a well-known non-linearity which arises when the
VW is driven at high amplitude. This high amplitude provides a sat-
isfactory SNR such that the measurement can be carried out rapidly,
accurately, and precisely. In what follows we will first discuss the
theoretical basis of this interpretation, then we will demonstrate
that this non-linearity exists regardless whether the steady state
or transient methods are implemented. A comparison of viscosity
measurements with the non-linear and the linear interpretations
is made for low viscosity fluids, and finally, a series of measure-
ments over a wide range of viscosities (0.3–159 mPa s) is presented
in the form of a discrepancy plot. The discrepancy between mea-
sured and literature values increases with viscosity and the largest
discrepancy was to be −3.6% at 159 mPa s. The standard deviation
for viscosities less than 50 mPa s was around 1%, which increased
to 2% at 159 mPa s.

2. Theory

2.1. Damped harmonic oscillator

The amplitude of motion of a vibrating wire, y(z), of circular
cross-section clamped at both ends is described by the equation
below and was discussed by Retsina et al. [2]. Here y corresponds to
the displacement normal to the wire axis, the latter being oriented
along the z direction.

EIyzzzz − Tyzz + (m0 + mf )ÿ + (D0 + Df )ẏ = Ff (z, t) (1)

The components of this equation can be classified into either
mechanical or fluid properties. The mechanical properties consist
of the Young’s modulus E, axial tension T, moment of inertia I, rod
mass per unit length m0, and internal damping per unit length D0.
The fluid properties consist of the added fluid mass per unit length
mf and the fluid drag per unit length Df. The right hand term is the
drag associated with flow startup Ff(z,t), which we will neglect in
this discussion. We are interested in understanding the effects of
fluid mechanics in this system, not on the detailed mechanics of the
rod, so we proceed to separate the solid mechanics problem from
the fluid mechanics one. To do this, we make the assumption that
axial flow in our system is negligible. This assumption is equiva-
lent to treating the system as a collection of two-dimensional flow
problems, each identical except for the amplitude of oscillation. If
we make the further assumption that the fluid mechanical param-
eters mf and Df are not spatially dependent, this allows the fluid
and solid mechanics to be decoupled. Using separation of variables
we can isolate the temporal portion of the Eq. (1) and add a sin-
gle stiffness constant, which we will term k. Rewriting Eq. (1) we
obtain:

mÿ + DLẏ + ky = 0 (2)

where m = m0 + mf and DL = D0 + Df. This can be recognized as the
equation of a damped harmonic oscillator and its solutions will be
the foundation of our analyses. The full case can also be treated, but
the additional complications are not instructive as to the general
method and are only presented in Appendix A. The linear drag, DL,
and total mass m, will in general depend upon the fluid viscosity,
fluid density, wire dimensions, resonant frequency, and vibrational
amplitude. For small amplitudes, however, both the drag and total
mass will be constants that do not depend on amplitude. In such a
case, the motion will have a particularly simple solution y0 given
by

y0 = exp(−�ωt)(C0,1 exp �ωt + C0,0 exp − �ωt) (3)

where ω2 = k/m − (DL/2m)2 and �ω = DL/2m. The coefficients C0,0
and C0,1 are determined by the initial conditions of the motion,

with the caveat that the real motion comes from the real part of Eq.
(3). For comparison to experiment, it is convenient to rewrite Eq.
(3) as

y0 = V0 exp(−�ωt) cos(ωt + �0) (4)

where � is the phase shift.

2.2. Weakly nonlinear damping

If the amplitude of vibration becomes large, the drag and added
mass coefficients are no longer constant, but vary with amplitude.
This condition can be met by either increasing the wire amplitude
for a given viscosity or decreasing the fluid viscosity for a given
amplitude. We can define the non-dimensional amplitude ε as y/R,
where again R is the wire radius and the Reynolds number is defined
as the �ωyR/�. The amplitude is typically considered small where ε
is significantly less than 0.1 and our experimental results will help
us to determine where the viscosity and hence Reynolds number
plays a role. We can expand the drag in a power series of velocity
to produce the nonlinear drag DNL.

DNL = DL(1 + ˛1ẏ2 + ˛2ẏ4 + . . .) (5)

The odd power terms are eliminated as they produce unphysical
drag. A similar expansion could be performed for added mass, or
with alternate forms for the drag expansion, but such discussion
is left to Appendix B. The parameters ˛i describe the power series
of the fully nonlinear drag. Keeping only the smallest term in the
expansion of drag, the oscillator equation becomes

mÿ + DL(1 + ˛1ẏ2)ẏ + ky = 0 (6)

We solve this equation perturbatively, starting from the linear
solution y0 where ˛1 = 0. The total solution y can be rewritten as
y = y0 + y1, which can be used to define the difference y1, where
y1 � y0. Substituting this first-order definition of y into Eq. (6) and
subtracting the linear result (mÿ0 + DLẏ0 + ky0 = 0) we obtain:

mÿ1 + DLẏ1 + ky1 = −DL˛1(ẏ0)3 − DL˛1(3y1y2
0 + 3y2

1y0 + y3
1) (7)

By eliminating terms on the right hand side that include factors of
the small perturbation y1 we can rewrite the above equation as:

mÿ1 + DLẏ1 + ky1 = −DL˛1ẏ3
0 (8)

This can then be generalized to solve for all subsequent yn as the
solution to the linear equation for yn and all remaining nonlinear
terms less than n.

Using our previous solution for y0 and Eq. (8) yields a solution
for y1

y1 = exp(−3�ωt)

(
n=3∑
n=0

C1,n exp((n − 3)�ωt)

)
(9)

where the coefficients C1,n are related to the coefficients C0,p by

C1,n =

(
3
n

)
DL˛1[C0,0(−�ω − 	ω)]2n−3[C0,1(−�ω + �ω)]3−2n

m(−3�ω + (2n − 3)	ω)2 + DL(−3�ω + (2n − 3)	ω) + k
(10)

The first index of C corresponds to the order of the expansion and
the second index specifies the coefficient term. In more experimen-
tally practical notation, this becomes

y1 = exp(−3�ωt)(V1,3 cos(3ωt + �1,3) + V1,1 cos(ωt + �1,1))

(11)
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