SIRT1 Suppresses β -Amyloid Production by Activating the α -Secretase Gene ADAM10

Gizem Donmez, Diana Wang, Dena E. Cohen, and Leonard Guarente^{1,*}

¹Paul F. Glenn Laboratory and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 0

*Correspondence: leng@mit.edu DOI 10.1016/j.cell.2010.06.020

SUMMARY

A hallmark of Alzheimer's disease (AD) is the accumulation of plaques of Aβ 1-40 and 1-42 peptides, which result from the sequential cleavage of APP by the β and γ -secretases. The production of $A\beta$ peptides is avoided by alternate cleavage of APP by the α and γ -secretases. Here we show that production of β-amyloid and plaques in a mouse model of AD are reduced by overexpressing the NAD-dependent deacetylase SIRT1 in brain, and are increased by knocking out SIRT1 in SIRT1 directly activates the transcription gene encoding the α -secretase, ADAM10. SIRT acetylates and coactivates the retinoic β, a known regulator of ADAM cription le Noto ADAM10 activation by SIRT1 also pathway, which is known to repa in the brain. Our findings ing activation is te Si a viable strategy to com AD and aps other neurodegenerative dis

INTRODUCTION

j is Alzheimer's diseas urodegenerative disorder affecting duals reaching the age of 80 ne-tr (Tanz displays a stereotypical brain d Be gy; de sition of plaques of amyloid beta (Aβ) peptides and tangles of the neurofibrillar protein τ elkoe, 2002). Affected individuals suffer neurolog-(Hardy ical damag ulting in memory loss, cognitive, and functional decline and a

Insight into the etiology of AD has come from studies of the rare familial form of early onset AD (Selkoe, 1997). Dominant mutations have been found in the gene encoding the neuronal membrane protein amyloid precursor protein (APP), which can be cleaved in two sequential steps by the β - and γ -secretases to generate A β 1–40 and 1–42 amyloid peptides (Tanzi and Bertram, 2005). A second class of dominant mutations giving rise to familial AD fall in genes presenilin 1 and 2 (PSEN1 and 2), which encode components of the γ -secretase (De Strooper, 2007). These findings suggest a pathway of AD in which sequential cleavage of APP by the β and γ -secretases leads to accumu-

lating β -amyloid and the synstre patholic of AD, such as A β plaques, τ tangles, a generation.

Interestingly, the es is avoided by an alternate APP vage path red by the α-secretase followed by retase (Pos al., 2004). Indeed, α-secretase clea age of has been shown to be protective in AD models (Mattson, 1) Kojro and Fahrenholz, 2005). The uentially cleave the notch receptor ecretases also enerate a notch intracellular domain (NICD) (Kojro and renholz, 20 van Tetering et al., 2009). The NICD activates h as HES1 and HES5 to facilitate neurogenear genes, ment and damage repair in adults (Kopan and Yoon and Gaiano, 2005; Costa et al., 2005). llagan, M10 encodes the α -secretase (Saftig and Hartmann, 2005; olz et al., 2008), and transcription of this gene is activated by the retinoic acid receptor (RAR) (Fahrenholz et al., 2008; Prinzen et al., 2005; Tippmann et al., 2009). Indeed, several studies suggest a link between retinoic acid (RA) signaling in the brain and AD (Goodman and Pardee, 2003; Corcoran et al., 2004; Goodman, 2006).

Sirtuins are NAD-dependent deacetylases that counter aging and have a wide spectrum of metabolic and stress-tolerance functions (Sinclair, 2005). Of the seven mammalian sirtuins, the SIR2 ortholog SIRT1 deacetylates numerous regulatory proteins, such as PGC-1 α , p53, FOXO, HSF, and HIF-2 α to trigger resistance to metabolic, oxidative, heat, and hypoxic stress (Guarente, 2009). SIRT1 has been directly implicated in neuronal protection against stress in cultured cells (Qin et al., 2006). In mice, SIRT1 has been shown to protect against neurodegeneration in the p25 overexpression model (Kim et al., 2007), as well as in Wallerian degeneration slow mice (Araki et al., 2004). More generally, SIRT1 mediates at least some of the effects of calorie restriction (Guarente, 2008), a diet reported to protect against models of neurodegenerative diseases, including AD (Patel et al., 2005).

Here, we investigate whether SIRT1 levels in brain affect the A β plaque formation, pathology, and cognitive decline in AD mouse model (APPswe/PSEN1dE9 double transgenic). We show that SIRT1 can suppress AD in a mouse model for this disease. The induction of brain pathology and behavioral deficits was mitigated in AD mice overexpressing SIRT1 in brain, and exacerbated with SIRT1 knocked out in the brain. SIRT1 directly activates transcription of ADAM10, which encodes the α -secretase by deacetylating RAR β . SIRT1 appears to direct APP processing toward the α -secretase and away from the β -secretase, which results in a reduction in the production of toxic β -amyloid

peptides. Furthermore, by activating ADAM10, which is also known to cleave the membrane-bound notch receptor thus liberating an intracellular domain that activates nuclear genes for neurogenesis, SIRT1 also activates notch pathway. As a result of this, SIRT1 helps to mitigate AD by increasing neurogenesis and neuroprotection that would be a second way besides suppressing β -amyloid production.

RESULTS

Effects of SIRT1 Levels in a Mouse Model of AD

We wished to test whether the levels of SIRT1 in the brain could influence $A\beta$ plaque formation and the accruing pathological and cognitive decline in a mouse model of AD. We thus employed a model in which two linked transgenes, encoding the human APPswe and PSEN1dE9 alleles drive Aβ plaque formation and learning and memory deficits (Jankowsky et al., 2004). Plaques are evident in this model at 3-5 months of age, and they progress in number and size as mice grow older. In order to test the effects of increasing SIRT1 in these AD mice, they were crossed to strains bearing a SIRT1 transgenic allele (Tg in figures) that results in overexpression of the protein in the brain by about 2-fold (Bordone et al., 2007). Neither the SIRT1 transgene nor the knock-out allele described below affected expression of the APPswe or PSEN1dE9 disease genes (not shown). In all experimen compare congenic C57BL/6 littermates by quantifying co aı plaque number in serial coronal cross sections.

We observed a marked reduction of plaques month-AD transgenic mice overexpressing SIRT1 mpare to AD control mice (Figure 1A). Wild-typ √T) m withou orde the AD disease genes were free of plaque SIRT1 in the brain, we used brain ecil K Out (BSKO) (Cohen et al., 2009), which ck full le SIRT1 in all neurons and glia (Figure 1B) how norma ult brain morphology (Figure S1A ava. To test the effects of Je oi SIRT1 inactivation, BSM mice were ssed to AD mice. Remarkably, AD-BSK 3 and 5 months nce all died betw of age, whereas A ce or KO mice themselves lived well Figu past 1.5 years of a C and data not shown). Although cause eath in AD-BSKO mice, we have not pinpoin this synthe lity is dicative of a strong genetic interact the g nvolved, further linking SIRT1 petw to A thoge Consistent with this, AD-BSKO mice displayed in plaques in 3-month-old mice D control mice (Figure 1D). compared

In order to sait or other features of brain pathology, we assayed for glios by immunological quantitation of the glial marker of inflammation, glial fibrillary acidic protein (GFAP) (Panter et al., 1985). A progressive increase in cortical GFAP staining was observed in AD control mice, and this was markedly reduced in AD-Tg mice and exacerbated in AD-BSKO mice (Figure 1E). In addition, phosphorylation of τ at Ser199 and Ser399 (Johansson et al., 2006) was evident in AD mice and suppressed in AD-Tg mice (Figures S1B and S1C).

AD mice show age-dependent decline in learning and memory (Reiserer et al., 2007), which can be measured with behavioral tests. In the fear-conditioning test (Bryan et al., 2009), mice were trained on day 1 by repeated exposure to a tone followed

by a foot shock (Figure 2A). Memory of this training is evinced on day 2 by a freezing behavior when exposed to the tone without the shock. AD control mice showed a progressive decline in performance in this test at 8 and 11 months of age compared to 4 and 6 months of age (Figure 2B). This decline was clearly suppressed in older, age-matched AD-Tg mice. the AD genes Wild-type and SIRT1 transgenic mice with gure 2B). showed roughly normal learning at Conversely, AD-BSKO mice were prelously de e in this test at 4 months of age, whereas B the AD mice with disease genes performed similar wila mice (re 2C).

In the Morris water maze use visual , mice are atform cues to find a submerge pool (Bryan an op et al., 2009). By determining required to find the platform (escape latency) as days of ancti ning, we observed a marked declin performa nd 10-month-old AD mice compar onth olds e 2D). This decline was AD-Tg mice. In mice without the AD significantly ntigate genes, the SIRT1 tra ne had no effect at any ages suppression of decline in AD-Tg indicating that (Fig mi s not due to an inherent increase in learning and memory T1 overex in sing mice. As in the fear conditioning test, ΑD KO mice played a precocious defect at 4 months of 2E) e observed no differences in swim speed in age ((Figure S1D). any mice

tivates α-Secretase and Reduces Production β-Amyloid

Because $A\beta$ plaques were reduced in SIRT1 transgenic mice, we quantitated $A\beta$ levels in brains of AD mice overexpressing or lacking SIRT1 by ELISA. Strikingly, $A\beta$ 1–42 levels were substantially reduced in AD-Tg mice and enhanced in AD-BSKO mice (Figure 3A). SIRT1 affected $A\beta$ 1–40 in a like manner (Figure S2A). The reduction in $A\beta$ levels in SIRT1 overexpressing mice was largest in 4-month-old mice and grew smaller, but was still evident, in older mice. A second assay using immunoblotting also showed similar effects on $A\beta$ levels by SIRT1 (Figure S2B).

A reduction of A β levels by SIRT1 could reflect a reduced production of the amyloid peptides. To address the potential of mice to produce A β , we prepared brain extracts and assayed the α and β -secretases (Kojro and Fahrenholz, 2005; Fahrenholz et al., 2008; Rockenstein et al., 2005). Remarkably, AD-Tg mice showed a doubling of α -secretase activity in 2-, 4-, and 6-monthold mice compared to AD-controls (Figure 3B). Conversely, there was a small but significant reduction in BSKO mice with or without the AD genes.

In addition, we observed a small decrease in β -secretase activity (Figure 3C) and BACE1 (β -secretase) RNA (Figure S2C) in SIRT1 overexpressing mice at all ages. However, because β -secretase was induced by the progression of disease in AD mice (Fukumoto et al., 2004), it is likely that the small decrease in this activity in AD-Tg mice is a secondary consequence of a slower disease onset and progression. Consistent with this idea, β -secretase activity (Figure 3C) and BACE RNA levels (Figure S2C) were higher in AD-BSKO mice compared to AD mice. Examination of individual γ -secretase subunits pen2 (Figure S2D), Aph1a, Aph1b (Figure S2E), and presenilin 1 (Figure S2F) showed no differences in mice with altered levels of SIRT1.

Download English Version:

https://daneshyari.com/en/article/2036263

Download Persian Version:

https://daneshyari.com/article/2036263

<u>Daneshyari.com</u>