Directed Conversion of Alzheimer's Disease Patient Skin Fibroblasts into Functional Neurons

Liang Qiang, 1,3 Ryousuke Fujita, 1,3 Toru Yamashita, 1,3 Sergio Angulo, 2,3 Herve Rhinn avid Rhe Lily Chau, Laetitia Aubry, William B. Vanti, Herman Moreno, and Asa Abeliovich

g 1208, 65 West 168th Street, ¹Departments of Pathology, Cell Biology, and Neurology and Taub Institute, Columbia Universit ck B New York, NY 10032, USA

ogy and ²The Robert F. Furchgott Center for Neural and Behavioral Science, Departments of Neural 2015 and Physiology, rmaco State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA

³These authors contributed equally to this work

*Correspondence: aa900@columbia.edu

DOI 10.1016/j.cell.2011.07.007

SUMMARY

Directed conversion of mature human cells, fibroblasts to neurons, is of potential clinical for neurological disease modeling as well a therapeutics. Here, we describe the effi ent ger tion of human-induced neuronal ells fi adult skin fibroblasts of unaffeo uals a Alzheimer's patients, using viral scription regulators and e port factors. nsic hiN cells from unaffected viduals di y morphological, electrophysical and gene pression profiles that typify plutamate forebrain neurons to integrate and are compete ctionally into the ells from familial Alzheimer disease rodent CNS, hi with resenilin-1 or -2 mutations (FAD) patien ssing 7 exhibit altered localization of amyloid increased production of precur e patient fibroblasts or hiN Αβ ative the st sted individuals. Together, our find-Ce ings directed conversion of human fibroble to a neuronal phenotype and reveal cell type-selet pathology in hiN cells derived from FAD patients.

INTRODUCTION

Mature mammalian cells can be reprogrammed to alternative fates by introduction of lineage-specific transcription regulators. For instance, Myod1 expression has been shown to induce a myocyte phenotype in fibroblast cultures (Davis et al., 1987). Similarly, transduction of a set of pluripotency regulators is sufficient to convert skin fibroblasts to induced pluripotency stem (iPS) cells with embryonic stem cell characteristics (Takahashi et al., 2007; Takahashi and Yamanaka, 2006; Yu et al., 2007). iPS cell technology has fueled much excitement in regenerative medicine, as these cells could be differentiated to generate "replace-

eutics. Patient iPS cell-derived neurons have een p sed to serve as neurodegenerative disease vich and Doege, 2009). mod

A limitation to human iPS cell technology is that it remains inefless than 1% of cells are typically reprogrammed) and time intensive; iPS cell generation and subsequent differentiation to a neuronal phenotype can take 1-2 months each. Furthermore, the pluripotent state is associated with tumorigenesis and genetic instability (Pera, 2011). Recently, the directed conversion of rodent skin fibroblasts to a neuronal fate was reported, utilizing a set of three forebrain transcription regulators and apparently circumventing the production of a pluripotent intermediate state (Vierbuchen et al., 2010). Here, we describe the directed conversion of adult human fibroblasts to a neuronal phenotype, termed human-induced neuronal (hiN) cells. To validate the approach, we show that hiN cells display electrophysiological properties of forebrain glutamatergic neurons and can integrate into mammalian CNS circuitry.

We further apply hiN cell technology to a panel of skin fibroblasts derived from patients with sporadic or familial forms of Alzheimer's disease (AD) and examine AD-associated neuronal pathologies. AD patients typically present with age-associated cognitive dysfunction, including reduced short-term (episodic) memory and spatial disorientation. These cognitive deficits are associated with neuronal and synaptic loss that is most prominent within the medial temporal lobe of the cerebral cortex and the hippocampus (Alzheimer, 1907). Additional pathological features of AD include extracellular amyloid plaques composed largely of Aβ fragments of amyloid precursor protein (APP) and intraneuronal tangles of Tau-paired helical filaments (Hardy and Selkoe, 2002). Rare, autosomal, dominantly inherited familial forms of AD (FAD) are caused by mutations in APP or in the two presenilin genes (presenlin-1 and -2, or PSEN1 and PSEN2) that encode components of the γ -secretase enzyme complex that is required for APP cleavage to AB (Hardy and Selkoe, 2002).

The amyloid hypothesis of AD, which is based on the aforementioned pathological and genetic findings, proposes that modified cleavage of APP by β -secretase and γ -secretase leads

to the generation of a pathogenic Aβ42 fragment. Consistent with this hypothesis, expression of disease-associated PSEN FAD mutations in cell and animal models leads to preferential accumulation of A\beta42 isoform relative to an A\beta40 isoform. Nonetheless, basic questions regarding the pathogenic mechanism of PSEN FAD mutations remain (De Strooper and Annaert, 2010; Shen and Kelleher, 2007). For instance, although PSEN FAD mutations increase relative Aβ42 production, they paradoxically reduce total γ -secretase activity, at least in cell-free and heterologous cell overexpression systems (Bentahir et al., 2006; Walker et al., 2005). The potential role of reduced γ -secretase activity in the disease process remains controversial. As the majority of studies to date rely on exogenous overexpression of PSEN FAD mutations in tumor cells, transgenic mice, or skin fibroblasts, the impact of endogenous PSEN FAD mutations on functional human patient neurons remains unclear. Moreover, why mutations in the broadly expressed PSEN-1 and -2 genes lead to a selective neuronal pathology is an open question.

RESULTS

Phenotypic Characterization of hiN Cells

We initially attempted to convert human adult skin (STC0022; see Table S1 available online) to hiN cells vira cotransduction of a combination of three transcription tors-AscI1. Brn2, and Mvt1I-that were ٧e be ef ucher for reprogramming of rodent cells (V al., led to These attempts were unsuccessful ptotic cell death. Viral cotransduction of √t1l, Zic transcription regulators—Brn2 g2, and Ascl1, in factors (inclu the presence of neuronal su brain-derived 3, and glialneurotrophic factor [BD] _a, h trophin-3 conditioned media [AN], result the generation of cells with a neuronal m ology (humanced neuronal cells, or A-1N Three weeks after viral transduction, hiN cells) (Figur hiN cells we ositiv r neuronal markers, including Tui1. MAP2, Tau1, Ne AM, an eurofilament-160 kd (Figures 1B-1G S1). Such cells were never es transduced with control vector obs roblasi d in H and 1I). ell staining with the astroglial marker Figure tein (GFAP) was not detected in hiN cell ai cultu figure S1). More than 90% of MAP2-positive cells were po for the neocortical glutamate neuron marker Tbr1 d theseTbr1-positive cells did not express the fibroblast marker, fibroblast-specific protein-1 (FSP1; Figure 1L). Approximately half of the MAP2-positive cells were positive for the mature glutamatergic neuron marker vesicular glutamate transporter-1 (vGLUT1) in a stereotypical punctate pattern (Figure 1M). Only rare MAP2-positive cells (less than 1%) displayed the GABAergic neuron marker, glutamic acid decarboxylase-65 (GAD65; Figure 1N).

We applied our hiN cell conversion protocol to a panel of nine adult human skin fibroblast lines in total (see Table S1). Quantitative analysis indicates that conversion efficiency of fibroblasts to MAP2-positive hiN cells across these lines ranged from 7.1% to 8.9% (as a percentage of input fibroblasts; n=3 per group). After accounting for cell attrition during the 3 week culture, 28.4%-36.1% of the surviving cells were MAP2 positive (Fig-

ure 10). Across these lines, 48.2%–60.9% of the MAP2-positive cells were also positive for vGLUT1 (Figure 1P).

Time course analysis indicated that MAP2- and vGLUT1-positive hiN cells first appear by day 7 after viral vector transduction and that maximal conversion occurs (Figure 2A). After 21 days, hiN cell number decreas and this accompanied and Figure by evidence of apoptosis (Figure C-S2G). Remaining cells displayed processi longated rocesses, as expected (Figure S2B). aetermin I factors that are necessary and su ent to ells, we removed nerate facto ctors or exrinsic components individual transcript . These from the conver a indicated that Ascl1 on p and Brn2 are prog , whereas Zic1 and Myt1I ential fo modify eff v, and Olig ears to be redundant (Figure 2B) duction with viral factor cocktails, converted er، cells maintained ression of the extrinsic virally encoded n2, and Mcanscription factors, as determined by -PCR analysis, whereas extrinsic Zic1 expression was mainained only 🍱 subset of cultures (Figure S2A). Maintenance of ogenous or expression may have contributed to the totic lo of hiN cells with extended culturing. Of the tested nsic factors, only BDNF appeared essential for production of MAP2+/vGLUT1+ cells (Figure 2B and Figure S2D). ingle polycistronic lentivirus vector harboring the genes Asc/1, Brn2, and Zic1 (ABZ vector) was sufficient for the conversion process (Figure 2C and Figures S2K-S2N), ABZ vectormediated conversion was highly efficient and could be further enhanced by adding Myt11 (Figure 2C and Figures S2O-S2V). Specifically, $62\% \pm 6\%$ of the adult human fibroblasts that were transduced with the ABZ vector and $85\% \pm 15\%$ of the cells that were transduced with the ABZ vector and Myt1 acquired a MAP2-positive neuronal morphology phenotype (Figure 2C and Figures S2L-S2Q). These hiN cells expressed additional neuron markers, including Tau-1, Tuj1, Tbr1, and vGLUT1 (Figures S2R-S2V).

To further characterize the hiN cell phenotype, we performed whole-transcriptome gene expression profiling on neurons that were purified from hiN cell cultures. hiN cell cultures were subjected to fluorescence-activated cell sorting (FACS; Figures S2H-S2J) to select for neural cell adhesion molecule (NCAM, a marker for mature neurons as well as some neural progenitors)-positive cells. RNA preparations from FACS-purified hiN cells, total ("mixed") cultures, and unconverted fibroblasts were then analyzed for genome-wide expression (Table S2). Hierarchical clustering analysis demonstrated that the transcriptome profiles of purified hiN cells were more similar to each other than to the originating fibroblasts (Figure 2D). Using gene ontology (GO) functional annotation, we identified genes that are most enriched within the purified hiN cell samples relative to the fibroblast samples (upregulated by at least 4-fold with a significance analyses of microarrays false discovery rate [FDR] cutoff of less than 25%). Consistent with a neuronal phenotype, the most highly enriched, functionally annotated gene sets in the purified hiN samples included "axonal projection" and "neuronal differentiation" genes (Figures 2E-2G and Table S2). Finally, we performed hierarchical clustering to broadly compare hiN cell gene expression profiles to those seen in human neurons (isolated from postmortem brain samples) and

Download English Version:

https://daneshyari.com/en/article/2036322

Download Persian Version:

https://daneshyari.com/article/2036322

<u>Daneshyari.com</u>