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In 1977, Charles and Ray Eames pro-
duced a short movie entitled “Powers of 
Ten,” taking viewers on a journey through 
space that spanned many orders of mag-
nitude, from the atom to the outer uni-
verse (http://www.powersof10.com). The 
journey can be a humbling experience. 
Quoting Carl Sagan: “We find that we 
inhabit an insignificant planet of a hum-
drum star lost in a galaxy tucked away 
in some forgotten corner of a universe in 
which there are far more galaxies than 
people.”

Biomedical research has focused 
on a subset of the orders of magnitude 
explored by Charles and Ray Eames, from 
ecosystems (106 meters) to the atomic 
structure of biomolecules (10−10 meters). 
Although each of these orders of magni-
tude is typically explored with different 
sets of experimental tools, in nature they 
are intricately connected. For example, 
point mutations in proteins can lead to 
changes in signaling circuitry that can 
change species behavior (de Bono and 
Bargmann, 1998) with a potential impact 
on interspecies interactions. Meanwhile 
behaviors like algal blooms that create 
phenotypes visible from space are likely 
to be under genetic control (Erdner and 
Anderson, 2006). Still, biological research 
has largely focused on characterizing 
the components that make up systems 
of interest. Only recently, with the advent 
of systems biology, has the emphasis 
shifted toward integrative studies that 
aim to describe how observed biological 
phenomena depend on the interplay of 

these components. An increase in quan-
titative data and improvements in com-
putational methods have led to the rise of 
models that, to some extent, can predict 
the nonintuitive behavior of biological 
systems at different scales. Examples of 
these include models of protein-binding 
affinities (Chen et al., 2008), signaling 
events in cell decision making (Santos 
et al., 2007), development (Bergmann et 
al., 2007), and homeostasis (Novák and 
Tyson, 2008).

In this Essay, we discuss one such 
method, quantitative genetic interaction 
mapping, and its application to the study 
of different scales of biology. In a tribute 
to “Powers of Ten,” we journey from the 
whole organism to the atomic resolution 
of single amino acids.

Defining Genetic Interactions
The study of genetic interactions (or 
epistasis) has a strong theoretical basis 
in genetic linkage studies (Phillips, 2008). 
A genetic interaction between two genes 
implies that they impact each other’s 
functions. Genetic interactions between 
two loci can be mapped by measuring 
how the phenotype of an organism lack-
ing both genes (double mutant) differs 
from that expected when the phenotypes 
of the single mutations are combined (Fig-
ure 1A) (Mani et al., 2008; Phillips, 2008). 
The most commonly used neutral model 
assumes that the fitness of the double 
mutant is equal to the product of indi-
vidual single mutant fitness. For exam-
ple, if loss of gene A results in a growth 

rate 0.9 times the wild-type growth 
rate, whereas loss of gene B results in 
a growth rate of 0.8, then the expected 
growth rate of the double mutant (lack-
ing genes A and B) would be 0.72 times 
that of the wild-type (Figure 1A). This 
neutral model assumes that two genes 
do not normally impact each other, and 
in fact, experimental observations sup-
port the intuitive idea that most genes do 
not interact (i.e., strong genetic interac-
tions are rare) (Tong et al., 2001; Pan et 
al., 2004; Schuldiner et al., 2005). Cases 
where knocking out two genes causes a 
more deleterious effect than the fitness 
reduction expected from the combined 
loss of individual genes are referred to as 
negative or aggravating interactions (e.g., 
synthetic sickness) (Figure 1A) and often 
identify proteins that function in distinct 
but parallel pathways in a given process 
(Figure 1B). Alternatively, a double muta-
tion can have a smaller than expected 
impact on fitness, and these cases rep-
resent positive or alleviating interactions 
(e.g., suppression) (Figure 1A).

We have shown that pairs of yeast 
mutants that display positive genetic 
interactions often indicate two proteins 
that act in the same pathway or are phys-
ically associated (Figure 1B) (Roguev et 
al., 2008; Collins et al., 2007). A possible 
explanation is that if removal of a com-
ponent of a complex disables that com-
plex, then deleting a second component 
would have no additional effect, resulting 
in an epistatic (i.e., positive) interaction 
(Figure 1A). Alternatively, deletion of one 
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component of a complex could result 
in partial dysfunction of that complex 
with a detrimental effect on cell viabil-
ity. If the removal of an additional com-
ponent completely disabled this detri-
mental function, then the result would 
be a suppressive relationship, another 
type of positive interaction. Further-
more, if enough genetic interactions are 
collected for a set of genes, then each 
mutant engenders a genetic interaction 
profile, or phenotypic signature, repre-
senting how it genetically interacts with 
all other mutants tested. Comparison of 
these profiles is a powerful and unbiased 
way to identify genes that act in the same 
biochemical pathway (Figure 1C) (Pan et 
al., 2004; Schuldiner et al., 2005; Collins 
et al., 2007; Tong et al., 2004).

This multiplicative model is useful for 
quantitative measures such as growth 
rate but less so for complex phenotypes 
like cell morphology, necessitating alter-
native models of epistatic behavior (Mani 
et al., 2008). Here, our focus is on high-
throughput quantification of genetic 
interactions, analysis methods, and their 
applications across different species 
and scales of biological organization.

Generating Genetic Interaction Maps
Genetic studies are traditionally subdi-
vided into forward and reverse genet-
ics. Forward genetics often defines a 
phenotype of interest and then identifies 
mutants that contribute to this pheno-
type. In contrast, reverse genetics starts 
with genes of interest and attempts to 
define their function through mutational 
analysis. In this context, genetic interac-
tion screening can be defined as a form 
of reverse genetics.

The development of high-throughput 
genetic interaction screening was made 
possible by the creation of deletion librar-
ies for single nonessential genes in the 
budding yeast Saccharomyces cerevi-
siae (reviewed in Boone et al., 2007). An 
important landmark was the first imple-
mentation, termed synthetic genetic 
array (SGA), where each S. cerevisiae 
single gene deletion strain was mated to 
produce arrays of double-mutant strains 
(Tong et al., 2001). This enabled the 
rapid qualitative assessment of synthetic 
lethal interactions for many thousands of 
gene pair combinations. An alternative 
approach, dSLAM (diploid-based syn-
thetic lethal analysis with microarrays), 

detects genetic interactions using pools 
of barcoded yeast mutants (Pan et al., 
2004). In this approach, genetic interac-
tions are determined by the differential 
enrichment of double mutants growing 
in competitive culture as measured using 
barcode microarrays. Although in princi-
ple both methods can measure a range 
of epistatic effects, in practice they were 
used to identify synthetic sick or lethal 
(i.e., negative) interactions. The E-MAP 
(epistatic mini-array profile) strategy 
enabled colony size to be measured in 
an array format, thus quantifying genetic 
interactions in a high-throughput fashion 
(Collins et al., 2006; Schuldiner et al., 
2005). The barcode approach has been 
adapted to provide a quantitative genetic 
score (Decourty et al., 2008), and a flow 
cytometry device has been developed 
that can quantify precisely very small 
epistatic effects (Breslow et al., 2008).

In parallel with genetic interaction 
screening for S. cerevisiae, screen-
ing methods using knock down of gene 
expression by RNA interference (RNAi) 
have been developed for the worm 
Caenorhabditis elegans. In this case, 
worm strains carrying a specific muta-

Figure 1. Genetic Interactions
(A) Genetic interaction scores in budding yeast determined by E-MAP screens. Scores range from negative (e.g., synthetic sickness) when fitness of the double 
mutant is less than expected, to positive (e.g., suppression) when the fitness of the double mutant is higher than expected. Most gene pairs have genetic inter-
action scores close to zero (i.e., neutral). Circles represent yeast colony size, a measure of fitness.
(B) In this hypothetical example, the pathway components E and F are required for function Y. Components A through D are important for function X, although 
the AB branch is redundant with the CD branch; C is a three-subunit complex. Both X and Y functions are important for yeast viability, but they are independent, 
and consequently no epistatic interactions exist between them.
(C) A matrix of genetic interactions for the pathway in (B). The branches AB, CD, and EF are enriched for positive interactions within each cluster. Additionally, 
the AB and CD branches are redundant and show an enrichment of negative interactions between them. Neutral genetic interactions are expected between the 
EF branch and the ABCD module given their independent contributions to fitness. The genetic interaction scores of each gene with all others form a phenotypic 
vector that can be analyzed using clustering methods. Hierarchical clustering of the expected genetic interaction scores for this example pathway is expected 
to result in three clearly distinct clusters (AB, CD, and EF). Genetic interactions alone would not distinguish between the C complex subunits (C1, C2, and C3) 
and D.
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