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a  b  s  t  r  a  c  t

The  accuracy  and  predictability  of  correlations  and  models  to  determine  the  flammability  characteristics
of  chemical  compounds  are  of  drastic  significance  in  various  chemical  industries.  In  the  present  study,  the
main focus  is  on introducing  and  applying  the  gene  expression  programming  (GEP)  mathematical  strategy
to develop  a comprehensive  empirical  method  for  this  purpose.  This  work  deals  with  presenting  an
empirical  correlation  to  predict  the  flash  point  temperature  of 1471  (non-electrolyte)  organic  compounds
from  77  different  chemical  families.  The  parameters  of  the  correlation  include  the molecular  weight,
critical  temperature,  critical  pressure,  acentric  factor,  and  normal  boiling  point  of  the  compounds.  The
obtained  statistical  parameters  including  root mean  square  of  error  of  the results  from  DIPPR 801  data  (8.8,
8.9, 8.9  K  for  training,  optimization  and  prediction  sets,  respectively)  demonstrate  improved  accuracy  of
the  results  of the  presented  correlation  with  respect  to previously-proposed  methods  available  in  open
literature.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The term flash point (FP) refers to the lowest temperature at
which a liquid gives off sufficient vapor to form an ignitable mixture
with air near the surface of the liquid or within the vessel used
[1]. FP values are essential information for the safe transportation,
storage, and use of combustible liquids [2–5].

Experimental measurement of FP is expensive and may  con-
tain high practical uncertainties. Therefore, calculation of FP of
various compounds has been the subject of many theoretical stud-
ies in order to develop accurate models. These investigations can
be classified into three main categories: “empirical correlations”,
“quantitative structure-property relationship (QSPR)” models, and
the well-known “group contribution” methods. It should be noted
that the latter is a special form of QSPRs; however, they are con-
sidered as a different class due to their easy to use nature and wide
range of applications. Good reviews are available in the literature
for various methods proposed for FP [6–8].

The first category contains those correlations that need at least
one of the other physical properties such as normal boiling point,
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density, vapor pressure, critical properties, and enthalpy of vapor-
ization [8].  To refer some of those models that lie in this class, we can
refer to those empirical correlations proposed by Prugh (200 com-
pounds, average absolute error 11 K, and maximum deviation 500%)
[9], Fuji and Herman (168 compounds, for 89% of compounds within
±10 K) [10], Patil (950 compounds, several models with AARD% of
10%) [11], Suzuki et al. (400 compounds, average absolute error
13.52 K) [12], Satyrayana and Kakati (250 compounds, AARD% of
8.3%, maximum deviation 32.72%) [13], Satyrayana and Rao (1221
compounds, several correlations) [14], Metcalfe and Metcalfe (201
compounds, average absolute error 8.6 K, maximum error 26.2 K)
[15], Hshieh (207 compounds, average absolute error 11.06 K) [16],
Catoire and Naudet (evaluated using 1471 compounds: [4] AARD
of 2.44% and average absolute error of 8.28 K) [7] and Gharagheizi
et al. (the former model: AARD of 2.4% and average absolute error
of 8.06 K; the latter model: AARD of 2.14%) [4,5].

The second category is the QSPR models in which FP is cor-
related using some chemical structure-based parameters called
“molecular descriptors”. These correlations just relate the FP to the
chemical structure and do not need any other physical properties.
We can refer to the QSPR models presented by Tetteh et al. (400
compounds, average absolute error of approximately 11 K) [17],
Katritzky et al. (the former: 271 and compounds, root mean square
error of 23.03 K; the latter: 758 compounds, AARD of 3.49% and
average absolute error of 10.65 K) [18,19], Gharagheizi and Alam-
dari (1378 compounds, AARD of 10.2%) [2].  There are numerous
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studies in this category; however, the general models are regarded
in this study. It is obvious that developing this type of correlations is
much more difficult than the ones for particular chemical families
such as hydrocarbons. The most important drawback of the QSPR
models is the complex procedure of calculation of the molecular
descriptors from chemical structure. As a result, these correlations
are not simple to use.

The third category includes the group contribution models (GC).
In this kind of methods, FP is correlated with the number of occur-
rences of some chemical substructures. It seems the only general
model from this class is the one proposed by the first author and his
co-workers (1030 compounds, AARD of 10.2%) [3].  Of course, there
are some other GC methods that proposed just for some particular
chemical families. They are not considered in this study. Perhaps,
the only important weak point of the GC models is the large number
of parameters that they require. In addition, in the recently pro-
posed version of GC, namely, artificial neural network-group con-
tribution (ANN-GC), the complexity of the model is another issue.

A comprehensive comparison between these three categories
is pretty difficult because there are several factors to be taken
into account, for instance, simplicity of the model, accuracy of the
model, simplicity of the parameters, and the comprehensiveness
of the method for covering the wider applicability domain. The lat-
ter includes both the number of compounds, and the diversity of
chemical compounds employed while developing and validating
the model.

According to the reported statistical parameters of the models,
the first category seems to be more convincing than others due to
the simplicity basis, accuracy and comprehensiveness.

As a result of statistical parameters of the models, it can be con-
cluded that despite significant progress in the estimation of FP using
the QSPR and GC methods, the empirical correlations give more
comprehensive and more accurate results. The latter can normally
give acceptable results within the range of the conditions and the
compounds, implemented for their development. Semi-empirical
correlations use some theoretical basis in the form of parameters
to improve the prediction capabilities.

In any case, certain parameters of the aforementioned cor-
relations should be regressed over the experimental data. Many
mathematical methods, including linear/nonlinear regression
methods and various kinds of optimization techniques have been
so far proposed for this purpose.

The genetic algorithm (GA), firstly introduced by Holland [20], is
considered as a heuristic optimization technique (among the evo-
lutionary algorithms) that follows the process of natural evolution.
It generally generates solutions (chromosomes) to optimization
problems through specific operators like selection, mutation, and
crossover [21]. The final solutions are encoded in fixed length
binary (0 and 1) strings. The modifications of this algorithm mainly
focus on manipulation of the mentioned operators. The genetic pro-
gramming (GP) [22] is an effective improvement of the GA, in which
the solutions are presented as nonlinear structures of parse trees
(treated as functions) instead of fixed length binary solutions. This
modification results in searching among variety of possible func-
tions for finding the final solution [22]. Considering the drawbacks
of the GP (which will be discussed later), Ferreira [21] introduced a
very fruitful modification to the original GP algorithm [22]. In the
new strategy, called “gene expression programming (GEP)” [23],
ramified structures of different sizes and shapes (parse trees) are
completely encoded in the linear solutions of fixed length that
finally lead to more probability of obtaining the global optimum
of the model parameters [21,23]. The description of the GEP [21]
algorithm is given in the next section.

The GEP [21] strategy has been, up to now, implemented for
several electrical, mechanical purposes such as development of
stage-discharge curves of rivers [24] and splitting tensile strength
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Fig. 1. A typical computer LISP program in the GP algorithm represented
as a parse tree (expression tree), which stands for the algebraic expression
[a + (a/b)] × [b − (a × b)] by a two-gene chromosome.

of concrete [25]; it is of great interest to employ the same algorithm
for determination of the flammability characteristics of chemical
compounds such as FP. It should be noted that our group has very
recently applied the method for development of some correspond-
ing states models for thermal conductivity of gases [26], viscosity
of gases [27], and solubility parameters [28].

2. Mathematical strategy

2.1. Genetic programming

As mentioned earlier, the GP [22] is an extension of the genetic
algorithms. The defined problem (the forms of the functions, num-
ber of parameters etc.) does not affect the main organization of the
GP searches manner [22,23]. The main distinction between the GP
[22] and the GA [20] is that in the former, the chromosomes con-
sist of nonlinear structures similar to parse trees though they are
similar to the GA [22] linear structures, which are naked replica-
tors working as genotype and phenotype [21]. These parse trees,
adopted like the protein molecules, include diverse forms of func-
tionality. Therefore, the final solution of a specific problem can be
found among more various types of functions. It is worth pointing
out that the genetic operators (such as recombination, crossover,
and mutation) also operate during the computational steps of the
GP similar to the original GA [20] but they resemble to pruning and
grafting of trees [21]. As indicated by Ferreira [21], the main dis-
advantages of the GP is that the complex replicators (parse trees
structures) can be only modified in limited ranges because their
reproduction should be done only on the parse trees. These modi-
fications include modifying or exchanging definite branches of the
corresponding parse trees [21], that may  be occasionally lead to
invalid (unacceptable) trees structures. A typical computer LISP
program based on the GP [22] algorithm is shown in Fig. 1. It should
be noted that the GP utilizes these kinds of computer programs for
data representation.

2.2. Gene expression programming

The GEP [23], resulting from the modification and extension of
the GP [22], is applying computer programs in order to solve a prob-
lem. In the latter technique, the population individuals are symbolic
expression trees unlike those of GEP [21], in which the individu-
als are encoded as linear chromosomes, which are later translated
into the expression parse trees, i.e. the genotype and phenotype
are eventually separated one another. As a consequence, the GEP
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