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Abstract

Henry’s law constant is an important property for predicting the solubility and vapor–liquid equilibrium. Usually, Henry’s law constants increase
as temperature and salt concentration increase and polynomial correlations are commonly used to model these effects.

In this article, the artificial neural network (ANN) method is used for modeling the Henry’s law constant dependence on temperature and salt
concentration, with methyl ketones in aqueous sodium sulfate solutions chosen for the study.

In the first part, one network is used for each system. The network topology is optimized and the 2-2-1 architecture is found to be the best. The
network satisfactorily estimates the Henry’s law constants of all systems in the study with an average relative deviation (ARD) of less than 1% for
all systems, which is comparable to available correlations.

In second part, which is based on the results of the first part, an ANN is designed for all systems. The new network has a 3-2-1 topology, giving
an ARD of correlation of less than 1% and ARD of prediction, depending on systems and data availability, of less than 3.5%. The predictive ability
is the most important advantage of the 3-2-1 ANN compared to 2-2-1 ANN and other correlations.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Experimental and theoretical studies of gas solubility are use-
ful in design and operation of different industrial processes,
as well as, indirectly, in providing the necessary information
about molecular interactions in solutions. To develop a reli-
able molecular theory, an accurate intermolecular potential is
necessary. The Henry’s law constant is directly related to the
residual chemical potential of solute at infinite dilution, which
is evaluated from the intermolecular potential between a solute
molecule and a solvent molecule. Therefore, the Henry’s law
constant is a suitable macroscopic property for testing the inter-
molecular potential between different kinds of molecules. Since
Henry’s law constants (H) are affected by temperature and
solutes present in the solutions, accurate measurement of these
constants is not easy. Experimental data are usually not available
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and therefore should be predicted using various thermody-
namic models. Many investigations are performed to model
the dependence of Henry’s law constant on several parameters
that temperature and salt concentration are the most important
ones.

Temperature is known as the most important variable affect-
ing the solubility and Henry’s law constant. Jou et al. [1,2]
studied the solubility of ethane in diethylene glycol (DEG)
and N-formyl molpholine (NFM) and calculated the Henry’s
law constants by Krichevsky–Ilinskaya equation. They observed
that Henry’s law constants increase as temperature increases.
Same studies were performed for solubility of H2S and CO2
in DEG by Jou et al. [3]. Bonifacio et al. [4] investigated the
solubility of xenone in n-hexane and obtained same results.
They used the equation introduced by Clarke and Glew, to
model the dependence of Henry’s law constant on temperature.
Henry’s law constants of propane, propene, trans-2-butene and
1,3-butadiene in methanol were studied by Miyano and Fukuchi
[5] and observed same results. Some related investigations [6,7]
confirm the usual effect of temperature on Henry’s law constant
but there are some exceptions. Angelo and Francesconi [8] stud-
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ied the solubility of hydrogen in n-alcohols and demonstrate
that the Henry’s law constants decrease while the tempera-
ture increases. Schnabel et al. [9] predicted the Henry’s law
constants of oxygen and nitrogen in ethanol by molecular sim-
ulation and indicated that Henry’s law constants decrease as a
consequence of increasing temperature. They also studied the
methane–ethanol and CO2–ethanol systems. For these systems,
when temperature increases Henry’s law constants increase and
then decrease.

Salt concentration affects the Henry’s law constant too.
Solubility of methane and carbon dioxide in water solutions
containing KCl, KBr, LiCl, LiBr, NaCl, NaNO3 and KNO3
were studied by Kiepe et al. [10–12] and these researches and
like approved that the Henry’s law constants increase as salt
concentration increases. They also observed the usual effect of
temperature on solubility and Henry’s law constant.

Modeling the Henry’s law constant and its dependence
on temperature and salt concentration requires appropriate
equations estimating the effects of temperature and salt concen-
tration. Teja et al. [13] studied Henry’s law constant of methanol
in aqueous systems and introduced the following equation for
estimation of Henry’s law constant:

ln H=ln P sat
1 + A

Tr
+ B(1 − Tr)0.355

Tr
+C exp(1−Tr)

T 0.41
r

+Dz (1)

where P sat
1 is the vapor pressure of solvent (water), A, B and

C are parameters depending on solvent and solute, D the salt
parameter and z is the mole fraction of salt. Chai et al. [14] used
Eq. (1) for predicting the Henry’s law constant (H) of methyl
ketones in water containing Na2SO4. A modified form of Eq. (1)
was applied for several systems by Falabella et al. [15] and the
calculated parameters were reported. The results of using Eq. (1)
for aqueous solutions are very good and confirm the superiority
of this correlation over other ones. Even equations as precise as
Eq. (1) and like, have lots of disadvantages, for instance, they
cannot produce reliable estimations for new systems.

Artificial neural network (ANN) is a powerful method for
modeling any kind of systems. Recently ANN is widely used
for modeling of different thermodynamics properties such as
vapor pressure, density, compressibility factor and vapor–liquid
equilibrium (VLE). Mohanty [16,17] and Urata et al. [18] used
the neural network for VLE calculations. ANN was also used
to design a mixing rule for VLE calculations [19], model the
protein solubility [20], predict solubility of anthracene in binary
and ternary solvents [21] and estimate solubility of some other
systems [22–24]. Niall et al. [25] used ANN with quantitative
structure–property relationship (QSPR) to predict Henry’s law
constants. Liu et al. [26] employed the ANN with QSPR models
based on quantum chemical descriptors for estimating various
properties of polymethacrylates. Puzyn et al. [27] modeled the
Henry’s law constants of chloronaphtalene congeners by using
QSPR models.

Considering the ability of ANN method for correlating of
different thermodynamics properties, in this work, ANN method
is used to model the Henry’s law constants of methyl ketones in
aqueous sodium sulfate solutions.

Fig. 1. Architecture of the 2-2-1 network (biases are not shown).

2. Method

2.1. Artificial neural network

Artificial neural network is a mathematical and numerical
method based on biological neural network. An ANN consists
of some connected neurons and process information. A network
is made of one input layer, one output layer and may also consist
of some hidden layers. Each layer is made of some neurons
connected to other neurons in previous and next layers. A neuron
has an input, an output and a transfer function. The Sigmoidal
transfer function is one of the performed functions, expressed
as the following equation:

aj = 1

1 + e −Si
(2)

where aj is the output of jth neuron and Sj is the input of jth
neuron, produced by outputs of previous layer. Sj is given as

Sj =
n∑

i=1

(wijai) + bj (3)

where ai s are the outputs of ith neuron from previous layer, wij

presents the weights applied to the connection of neuron ith and
jth, and bj is a bias number. Fig. 1 indicates the architecture of
used ANN for all systems. Temperature (K) and salt concentra-
tion (mol/kg water) are inputs and ln H (kPa) is the output of
network.

ANN is an adaptive network that changes its structure based
on external or internal information that flows through the
network during the learning (training) phase. Estimation of opti-
mum weights and biases of network needs an algorithm called
propagation method. Several kinds of propagation methods are
available and back propagation (BP) is the easiest and simplest
one with enough reliability. BP and other usual propagation
methods are explained completely in mathematical literatures
[28,29].

Before using the appropriate propagation method to calculate
optimum parameters of ANN, it is necessary to scale outputs and
inputs between 0 and 1. Eq. (4) is used as a linear function for
scaling.

(Scaled)value = (Actual)value × m + c (4)

Adjustable parameters of this equation (m and c) are tabulated
in Table 1, produced by two data points: (lowest actual value, 0)
and (highest actual value, 1).
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