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SUMMARY

Ribosome-footprint profiling provides genome-wide
snapshots of translation, but technical challenges
can confound its analysis. Here, we use improved
methods to obtain ribosome-footprint profiles and
mRNA abundances that more faithfully reflect
gene expression in Saccharomyces cerevisiae. Our
results support proposals that both the beginning
of coding regions and codons matching rare tRNAs
are more slowly translated. They also indicate that
emergent polypeptides with as few as three basic
residues within a ten-residue window tend to slow
translation. With the improved mRNA measure-
ments, the variation attributable to translational con-
trol in exponentially growing yeast was less than
previously reported, and most of this variation could
be predicted with a simple model that considered
mRNA abundance, upstream open reading frames,
cap-proximal structure and nucleotide composition,
and lengths of the coding and 50 UTRs. Collectively,
our results provide a framework for executing and in-
terpreting ribosome-profiling studies and reveal key
features of translational control in yeast.

INTRODUCTION

Although most cellular mRNAs use the same translation machin-

ery, the dynamics of translation can vary between mRNAs

and within mRNAs, often with functional consequences. For

example, strong secondary structure within the 50 UTR of an

mRNA can impede the scanning ribosome, thereby reducing

the rate of protein synthesis (Kozak, 1986; Andersson and Kur-

land, 1990; Bulmer, 1991; Kudla et al., 2009; Tuller et al., 2010,

2011; Plotkin and Kudla, 2011; Ding et al., 2012; Bentele et al.,

2013). The accessibility of the 50 cap (Godefroy-Colburn et al.,

1985; Richter and Sonenberg, 2005) and the presence of small

open reading frames (ORFs) within 50 UTRs referred to as up-

stream ORFs (uORFs) (Kozak, 1986; Ingolia et al., 2009; Brar

et al., 2012; Zur and Tuller, 2013) can also modulate the rate of

translation initiation (Sonenberg and Hinnebusch, 2009). Like-

wise, codon choice, mRNA structure, and the identity of the

nascent polypeptide can influence elongation rates (Varenne

et al., 1984; Brandman et al., 2012). In addition, differences in

elongation rates can influence co-translational protein folding,

localization of the mRNA or protein, and in extreme cases the

rate of protein production (Kimchi-Sarfaty et al., 2007; Xu

et al., 2013; Zhou et al., 2013). Finally, stop-codon readthrough

can introduce alternative C-terminal regions that affect protein

stability, localization, or activity (Dunn et al., 2013). Despite

known examples of regulation at each of these stages of trans-

lation, translation is largely controlled at initiation, which is rate

limiting for most mRNAs (Andersson and Kurland, 1990; Bulmer,

1991; Chu and von der Haar, 2012; Shah et al., 2013).

Variation in protein abundances observed in yeast cells largely

reflects variation in mRNA abundances, indicating that much

of gene regulation occurs at the level of mRNA synthesis and

decay (Greenbaum et al., 2003; Csárdi et al., 2015). However,

differences in translation rates also contribute. Studies using mi-

croarrays for global polysome profiling indicate that ribosome

densities for different mRNAs vary over a 100-fold range (from

0.03 to 3.3 ribosomes per 100 nucleotides), indicating extensive

translation control in Saccharomyces cerevisiae (Arava et al.,

2003). More recently, the use of ribosome-footprint profiling

has enabled transcriptome-wide analyses of translation using

high-throughput sequencing, which again suggested a nearly

100-fold range of translational efficiencies (TEs) in log-phase

yeast (Ingolia et al., 2009).
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