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The partial solubility parameters: An equation-of-state approach
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Abstract

The division of the well-known solubility parameter into its dispersion, polar, and hydrogen-bonding components has significantly upgraded its
capacity and usefulness in the screening and selection of the appropriate solvents in Industry and in Laboratory. This work presents a new statistical
thermodynamic approach for the estimation of these partial components over a broad range of temperature and pressure. Key to this approach is
the development of explicit expressions for the contribution of dispersion, dipolar, and hydrogen-bonding interactions to the potential energy ofthe
fluid. The approach is applicable to ordinary solvents, to supercritical fluids, as well as to high polymers. Information on various thermodynamic
properties of fluids is used in order to estimate the three solubility parameter components. Extensive tables with the key parameters are presented.
On the other hand, available information on these separate components is exploited in order to extract information for the thermodynamic behaviour
of the fluids over an extended range of external conditions.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The solubility parameter,δ, originally introduced by Hilde-
brand and Scott[1], remains today one of the key parameters for
selecting solvents in industry, characterizing surfaces, predicting
solubility and degree of rubber swelling, polymer compatibil-
ity, chemical resistance, and permeation rates, and for numerous
other applications. There is also much interest in utilizing sol-
ubility parameter for rationally designing new processes, such
as the supercritical fluid, the coating, and the drug delivery pro-
cesses[2–8].

One closely related concept toδ is the cohesive energyE,
which is defined as the increase in the internal energy per mole
of the system upon removal of all intermolecular interactions.
WhenE is divided by the molar volumeV, we obtain the cohesive
energy density (ced),E/V, of the system. The solubility parame-
ter is simply the square root of this cohesive energy density[1].

The conceptual simplicity ofδ makes it most attractive in
industry and in academia as well. Of course, the use of solu-
bility parameter is not always successful and this very lack of
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total success stimulates continuing research. The central princi-
ple behind the use ofδ is the historic alchemist maxim, “similia
similibus solvuntur” (“like dissolves like”), probably, the oldest
rule of solubility. This rule can, indeed, be a good guide in the
study of solubility, as long as we can also define with sufficient
precision the degree of likeness in the given system. This need
for precision in the definition of likeness lead to the division ofδ

into its partial components or Hansen solubility parameters[5]
δd, δp, andδhb, for the dispersion, the polar, and the hydrogen-
bonding contribution, respectively. Thus, liquids with similar
δd, δp, andδhb, are very likely to be miscible. The bulk of the
developments in solubility parameter reside on this principle
of “similarity matching” of properties. Since it is recognized,
however, that a more appropriate principle would be the “com-
plementary matching” of properties[9], the hydrogen-bonding
component,δhb, is further subdivided into an acidic component,
δa, and a basic component,δb, in order to account for the Lewis
acid and Lewis base character of the substance[8–10].

Over the years the partial solubility parameters were deter-
mined for an enormous number of substances and lead to critical
compilations available in the open literature[3,5]. This type
of compilations is a most valuable source of information for
the nature of the substances and their interactions with other
substances.
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Starting from the original definition of cohesive energy den-
sity and solubility parameter, we have already proposed a sys-
tematic approach for estimating the latter over an extended range
of temperature and pressure[11,12]. In this work it became
clear that the hydrogen-bonding contribution could be calcu-
lated rather accurately from the hydrogen-bonding part of the
potential energyE and the volumeV of the system as obtained,
for example, from the LFHB equation-of-state model[13]. The
model, however, could not separate the dispersion and the polar
components of the solubility parameters. The proposition was
made to calculateδd from the solubility parameter of the cor-
responding homomorph hydrocarbon. Although this proposal
could be valid for some classes of fluids, it could not be gener-
alized.

In the present work we will extent our previous approach
[11,12], in an effort to account for all three components of
the solubility parameter. This will be done by cadopting the
more recent and more accurate non-random hydrogen-bonding
(NRHB) equation-of-state framework[14], which will be modi-
fied in order to explicitly account for dipole–dipole interactions
and, thus, explicitly calculate the polar component,δp.

2. Theory

2.1. The equation-of-state framework

Let us consider a system ofN molecules of a fluid at tempera-
tureT, external pressureP, and of volumeV, which are assumed
to be arranged on a quasi-lattice of coordination numberz and
of Nr sites,N0 of which are empty. Each molecule is assumed to
be divided inr segments of segmental volumesv∗, and to have
zq = zrs external contacts,s been its surface-to-volume ratio, a
geometric characteristic of the molecule. The total numberNr

of lattice sites is given by

Nr = rN + N0 (1)

Following our previous practice[14], we may write for the
configurational partition function of the fluid in theN, P, andT
ensemble and in its maximum term approximation:
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Ed,Ep, andEhb in Eq.(2)are the dispersion, polar, and hydrogen-
bonding components, respectively, of the potential energy of
the system. The detailed rationale behind the form of the com-
binatorial term,ΩR, and its correction factors for non-random
distribution of free volume,ΩNR, and for the hydrogen-bonding,
Ωhb, can be found in the previous work[14]. Here we will simply
reproduce the final equations, namely:
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(3)

where

l = z

2
(r − q) − (r − 1) (4)

while the total number of intermolecular contacts in the system
is given by

zNq = zqN + zN0 (5)

In Eq.(3), ω is a characteristic quantity for each fluid that takes
into account the flexibility and the symmetry of the molecule
and which cancels out in all applications of our interest.

In the followings we will need the site fractionsf0 andf for
the empty sites and the molecular segments, respectively, which
are related by

f0 = N0
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= Nr − rN

Nr

= 1 − f (6)

For the second factor,ΩNR, we may use various expres-
sions available in the open literature[14]. The most classical
is Guggenheim’s quasi-chemical expression[15]:
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whereNrr is the number of external contacts between the seg-
ments belonging to molecules,N00 is the number of contacts
between the empty sites, andNr0 is the number of contacts
between a molecular segment and an empty site. The super-
script 0 refers to the case of randomly distributed empty sites.
In this random case we have:
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and
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where
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and the reduced volume is defined as

ṽ = V

V ∗ = rNṽv∗

rNv∗ = 1

ρ̃
(12)

ρ̃ being the reduced density.
The corresponding number of intersegmental contactsNij in

the non-random case are given by the following equations:
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rrΓrr = z
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