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Summary

The Bcl-2 family proteins are critical apoptosis regulators
that associate with mitochondria and control the activation
of caspases. Recently, both mammalian and C. elegans Bcl-
2 proteins have been implicated in controlling mitochondrial
fusion and fission processes in both living and apoptotic
cells. To better understand the potential roles of Bcl-2 family
proteins in regulating mitochondrial dynamics, we carried
out a detailed analysis of mitochondria in animals that either
lose or have increased activity of eg/-1 and ced-9, two Bcl-2
family genes that induce and inhibit apoptosis in C. elegans,
respectively. Unexpectedly, we found that loss of egl-1 or
ced-9, or overexpression of their gene products, had no
apparent effect on mitochondrial connectivity or mitochon-
drial size. Moreover, loss of ced-9did not affect the mitochon-
drial morphology observed in a drp-1 mutant, in which
mitochondrial fusion occurs but mitochondrial fission is
defective, or in a fzo-1 mutant, in which mitochondrial fission
occurs but mitochondrial fusion is restricted, suggesting
that ced-9is not required for either the mitochondrial fission
or fusion process in C. elegans. Taken together, our results
argue against an evolutionarily conserved role for Bcl-2
proteins in regulating mitochondrial fission and fusion.

Results

Mitochondrial Morphogenesis Is Not Affected

in egl-1(If) or ced-9(If) Mutants

Recently, the C. elegans proapoptotic BH3-only Bcl-2 protein
EGL-1 has been implicated in promoting mitochondria fission
during apoptosis [1]. In addition, the C. elegans antiapoptotic
Bcl-2 protein CED-9 was shown to mediate mitochondria
fission during apoptosis in one study [1] but was found to
promote mitochondria fusion in healthy cells in another [2],
calling into question of the exact physiological roles of
C. elegans Bcl-2 family proteins in regulating mitochondria
dynamics. To address the critical issue of whether Bcl-2
proteins regulate normal mitochondrial fission or fusion
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process in C. elegans, we carried out acomprehensive analysis
of mitochondria morphology and structure in animals that
either lose or have increased activity of egl-1 or ced-9. First,
we visualized mitochondria in early C. elegans embryos that
were stained with the mitochondria-specific dye tetramethylr-
hodamine ethyl ester (TMRE); the large blastomere size in early
embryos permits clear visualization of the mitochondrial
network. In N2 (wild-type) animals, in which mitochondrial
fission and fusion processes are balanced, mitochondria
appeared as a large network, evenly distributed through out
each cell (Figure 1A) [1, 3-7]. In drp-1(tm1108) mutant animals,
which are null for the DRP-1 protein expression and defective in
mitochondrial fission [7], mitochondria appeared as highly con-
nected clusters and asymmetrically distributed in individual
blastomeres (Figure 1B), which results from ongoing mitochon-
drial fusion in the absence of mitochondrial fission [6]. In
contrast, in fzo-1(tm1133) animals, which harbor a deletion in
the fzo-1 gene and in which mitochondrial fusion is compro-
mised but mitochondrial fission continues [7], the mitochon-
drial network was disrupted into highly fragmented, punctiform
organelles (Figure 1C). Thus, a defect in either the mitochon-
drialfission or fusion process is clearly identifiable in this assay.

Mitochondria in egl-1(n3082) animals, which carry a strong
loss-of-function (/f) mutation in egl-1, appeared undistinguish-
able from those in wild-type animals (Figure 1D), although
somatic programmed cell death is abolished in these animals
[8]. Similarly, the mitochondrial network appeared unaffected
in ced-9(n1950 gf) animals (Figure 1E), which carry a gain-of-
function (gf) mutation (a G169E substitution) in the ced-9
gene that prevents EGL-1 from binding to CED-9 [9, 10] and
thus blocks C. elegans programmed cell death [11]. We also
analyzed mitochondria morphology in two ced-9(If) mutants:
ced-9(n1653ts) and ced-9(n2812). The n1653 mutation causes
a Y149N substitution in CED-9 that reduces its association
with CED-4 at the restrictive temperature (25°C) and compro-
mises its apoptosis inhibitory activity [12], leading to ectopic
apoptosis. n2812 is an early nonsense mutation in the ced-9
gene [13] and a putative null allele that abolishes expression
of ced-9 in C. elegans [14]. ced-9(n2812) animals are embry-
onic lethal as a result of excessive apoptosis but can be
maintained and analyzed in the ced-3(If) or ced-4(If) mutant
background, which blocks apoptosis [11]. As shown in Figures
1F-1H, we observed no significant difference in mitochondrial
morphology in ced-9(n1653ts), ced-4(n1162) ced-9(n2812), or
ced-9(n2812); ced-3(n717) embryos compared to that in N2
embryos or that in ced-3(n717) or ced-4(n1162) embryos or
ced-9(n1653ts) embryos at the permissive temperature
(Figure S1 available online). We quantified the connectivity
of mitochondria in N2, drp-1(tm1108), fzo-1(tm1133),
egl-1(n3082), and ced-9(n2812); ced-3(n717) blastomeres by
generating line intensity plots and calculating the frequency
of major TMRE fluorescent spikes (Figure S2; method
described in Supplemental Experimental Procedures). In N2
blastomeres, TMRE fluorescent signals varied in frequency,
with an average of 0.49 fluorescent spikes/um (Figure S2).
TMRE fluorescent signals were very broad and of low spike
frequency in drp-1(tm1108) blastomeres (average frequency
of 0.16 fluorescent spikes/um; Figure S2), consistent with large
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clumps of mitochondria asymmetrically distributed within
cells. In contrast, fzo-1(tm1133) embryos displayed high
frequency of TMRE signal spikes, averaging 2.29 spikes/um,
delineating punctiform mitochondria evenly distributed
throughout the cells (Figure S2). The frequency of TMRE signal
spikes in egl-1(n3082), ced-9(n1950 gf) or ced-9(n2812); ced-
3(n717) blastomeres was similar to that of N2 animals (an
average frequency of 0.44 spikes/um and 0.48 spikes/um in
egl-1(n3082) and ced-9(n2812); ced-3(n717) blastomeres;
Figure S2). Taken together, these results suggest that loss of
egl-1 or ced-9 function does not affect mitochondria dynamics
and morphology in C. elegans.

Of note, a recent report showed that mitochondria appeared
highly fragmented in ced-9(n1653ts) embryos at the restrictive
temperature [2]. However, in that study, embryos were exam-
ined at a later stage of development and the mitochondrial
fragmentation observed could have been the result of wide-
spread ectopic apoptosis [1, 7], rather than a requirement for
ced-9 to maintain the integrity of the mitochondrial network.
Importantly, CED-9 protein is ubiquitously expressed in
embryos as early as the two-cell stage [14]. If CED-9 is
required to maintain normal mitochondrial networks, its role
should be uncovered in early embryos. The expression pattern
of EGL-1 is not well understood, but egl/-1 transcription has
been shown to be upregulated in several cells destined to
die [15]. Nonetheless, our results suggest that the activity of
egl-1 is not required for normal mitochondrial morphogenesis.

We carried out electron microscopy (EM) analysis to confirm
the TMRE staining results in Figure 1 and to investigate
whether egl-1 or ced-9 might play subtle roles in regulating
mitochondrial dynamics. In 2D images of EM sections from
N2 embryos, mitochondria appeared in a variety of shapes
and sizes, ranging from small spherical organelles to longer

ced-9(n1653ts)

Figure 1. The Mitochondrial Network Is Altered
in fzo-1 and drp-1 Mutants but Unaffected by
Mutations in eg/-1 and ced-9

Animals were stained with tetramethylrhodamine
ethyl ester (TMRE), a mitochondrial-specific dye,
and blastomeres at the four-cell embryonic stage
were imaged. Embryos were visualized by differ-
ential interference contrast (DIC, left) and
rhodamine fluorescence (right) microscopy.
Representative images are shown. Compared
to wild-type embryos (A), drp-1(tm1108) embryos
(B) have a highly connected mitochondrial
network, whereas mitochondria appeared highly
fragmented in fzo-1(tm1133) embryos (C). Mito-
chondria in egl-1(n3082) (D), ced-9(n1950 gf) (E),
ced-9(n1653ts) at the restrictive temperature
(F), ced-4(n1162) ced-9(n2812) (G), and
ced-9(n2812); ced-3(n717) (H) embryos were
indistinguishable from those observed in wild-
type embryos. Loss of ced-9 has no effect on
the mitochondria morphology in drp-1(tm1108)
or fzo-1(tm1133) animals. The mitochondrial
network in the ced-4(n1162) ced-9(n2812);
drp-1(tm1108) embryo (I) and in the fzo-
1(tm1133); ced-4(n1162) ced-9(n2812) embryo
(J) is similar to that seen in drp-1(tm1108)
embryos (B) and fzo-1(tm1133) embryos (C),
respectively. The scale bar represents 10 um.

dumbbell-shaped organelles (Figure 2A), and with a mean
longitudinal length of 0.94 um (Figure 2F). As expected, mito-
chondriain drp-1(tm1108) embryos were very long, with fewer
individual mitochondria observed in each cell (Figure S3A) and
a mean mitochondrial length of 2.28 pum (Figure 2F) [7].
fzo-1(tm1133) embryos displayed only small and spherical
mitochondria, with a mean mitochondrial length of 0.38 um
(Figure S3B and Figure 2F). However, mitochondria in egl-1
(n3082), ced-9(n1950 gf), ced-9(n1653ts), and ced-9(n2812);
ced-3(n717) embryos appeared similar to those observed in
N2 embryos and in all cases had mean longitudinal mitochon-
drial lengths that were not significantly different from those of
N2 animals (Figures 2B-2E). Mitochondria in the germline, gut,
and muscle cells of adult egl-1(If), ced-9(If); ced-3(If), or
ced-9(gf) mutants also appeared to be normal (data not
shown). The mitochondrial morphology in N2, drp-1(tm1108),
fzo-1(tm1133), egl-1(n3082), and ced-9(n2812); ced-3(n717)
animals was confirmed by serial EM sectioning and 3D recon-
struction from the serial images (Figure 3 and Figure S4).
Again, mitochondria in N2, egl-1(n2812), and ced-9(n2812);
ced-3(n717) animals varied in shape and size and were evenly
distributed throughout the cell. In contrast, mitochondria in
drp-1(tm1108) embryos were long, highly interconnected,
and clustered around the nucleus, whereas mitochondria in
fzo-1(tm1133) embryos were small, puntiform, and evenly
distributed. Altogether, these results confirm that eg/-7 and
ced-9 do not have a detectable role in regulating mitochondrial
fission or fusion in C. elegans.

ced-9 Does Not Promote drp-1-Dependent Mitochondrial
Fission or fzo-1-Dependent Mitochondrial Fusion

If CED-9 somehow has both profission and profusion activities
as previously reported [1, 2], it is conceivable that loss of ced-9
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