
Fluid Phase Equilibria 246 (2006) 52–63

Vapor–liquid equilibrium of copolymer + solvent mixtures:
Thermodynamic modeling by two theoretical equations of state�

Pedro F. Arce a, Silvana Mattedi b, Martı́n Aznar a,∗
a School of Chemical Engineering, State University of Campinas, P.O. Box 6066, Campinas-SP 13081-970, Brazil

b Department of Chemical Engineering, Federal University of Bahia, R. Aristides Novis 2, Federação, Salvador-BA 40210-630, Brazil

Received 3 November 2005; received in revised form 5 May 2006; accepted 15 May 2006
Available online 22 May 2006

Abstract

Copolymers are increasing their importance from the commercial point of view, mainly due to their tuned physical properties for specific
applications in the polymer manufacturing. Copolymers allow tailoring new materials with desirable features by blending specific copolymers,
which contribute for the physical properties of the final material. The description of the fluid-phase equilibrium of copolymer + solvent mixtures
by thermodynamic models is essential for the design of new manufacture processes. In this work, vapor–liquid equilibrium data for several
copolymer + solvent mixtures were modeled using two theoretical equations of state: one based on the lattice gas theory (LGT) and another one
based on the statistical association fluid theory, called perturbed chain-SAFT (PC-SAFT). The results show that the PC-SAFT equation of state
provides a better representation of the experimental data in terms of pressure deviations.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Nowadays, most polymers are not polymer anymore, but are
composed of different types of repeated monomer-units, forming
the so-called copolymers. In Fig. 1 appears the representation
of a copolymer with different monomer-units (types α and β) in
the molecular chain.

Copolymers allow tailoring new materials with desirable
physical properties by combining several different monomer-
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units. The commercial interest for copolymers and their world-
wide production have significantly increased in the last 20 years.
However, vapor–liquid equilibrium (VLE) data for copoly-
mer + solvent mixtures are still scarce [1]. Thus, it is important
to describe the VLE of these mixtures by theoretical equations
of state (EoS). There are a few studies in this direction. Gupta
and Prausnitz [1] used the perturbed hard sphere chain (PHSC)
EoS [2], with one or two binary parameters for each pair of dif-
ferent segments, to represent the VLE of 43 copolymer + solvent
and homopolymer + solvent mixtures, but without presenting
any deviations between experimental and calculated data. Lee
and Danner [3] used a group-contribution lattice-fluid EoS [4,5]
to represent the VLE for 16 copolymer + solvent solutions, also
without any comment on deviations between experimental and
calculated data. Silva et al. [6] used the Stryjek–Vera EoS [7],
coupled with the Wong–Sandler mixing rule [8] and the UNIFAC
group-contribution model for the activity coefficient [9] in order
to describe the VLE of solutions of poly(styrene-co-butadiene)
with pentane, toluene and cyclohexane, obtaining pressure devi-
ations between 6.0 and 17.5%.

The lattice gas theories (LGT) introduced by Walker and
Vause [10–12] and further studied by Goldstein and Walker
[13] have been shown to be descriptive of a wide variety of
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Fig. 1. Molecular model for a copolymer of type poly(α-co-β), containing monomers α and β.

phase transition phenomena. In particular, methods have been
developed for mapping experimental data on phase separations,
as a function of various perturbations, into the global phase
diagrams of the Hamiltonians studied. Detailed comparisons of
the theory with experiments on the effect of electrolytes, dilute
third components, pressure and isotopic substitution have shown
that the models are sensitive to small variations in the intrinsic
molecular properties which govern the existence of miscibility
gap(s). The parametric trends in these studies are generally in
accord with a specific, microscopic description of the important
physics in the systems [14]. The use of lattice models is also
well established in the polymer community. Taylor and Lipson
[15] concluded that using an integral equation theory to study
a lattice model of a polymer solution should be sufficient to
capture many of the most important details of polymer phase
transition. West et al. [16] used the single Sanchez–Lacombe
lattice fluid equation of state to model both phases for a
polymer-supercritical fluid-cosolvent system in a wide pressure
range both volumetric and phase equilibrium properties for a
cross-linked poly(dimethyl siloxane) phase in contact with CO2
modified by a number of cosolvents. Liu and Cheng [17] used
a simplified activity model for polymer solutions derived from
the Gibbs–Helmholtz relation, in conjunction with the lattice
theory to model polymer solutions. Vanderzande [18] made a
complete study in his book about lattice models in polymer
solutions.

In this work, two models are used to represent the VLE of
24 copolymer + solvent mixtures. One of the models is a LGT-
based EoS, developed by Silva [19] and Mattedi et al. [20] and
successfully applied to VLE calculations of polymer + solvent
systems [21,22]. The other one is the PC-SAFT EoS, devel-
oped by Gross and Sadowski [23] and successfully extended to
copolymers by Gross et al. [24] and Arce and Aznar [25]. The
models are described below.

2. The LGT equation of state

A given fluid of volume V is represented by a lattice of coor-
dination number ZC (usually taken as 10.0) containing M cells
of fixed volume V*. Expressed as group-contributions, the LGT
EoS is given by:
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where Z is the compressibility factor, νa
i the number of groups

of type a in a molecule of type i, Qa the area parameter of group a
and Ψ is an universal constant, taken as 1.0. The average number
of segments occupied by a molecule in the lattice, r, the average
number of close neighbors, q, and the reduced volume, ṽ, are
calculated by:
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where Ra and Va are the group-contribution parameters for the
number of segments and hard-core volume, respectively, va the
parameter for the molar hard-core volume for a group of type
a and v∗ is the cell molar volume, taken as 5.0 cm3/mol. There
are also others definitions:
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where uma is the interaction energy between groups m and a.
The fugacity coefficient for the model is:
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