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Abstract

Energy method is used to study the nonlinear stability of the motionless state of thermosolutal Rivlin–Ericksen fluid in porous medium for stress-
free boundaries. By defining energy functionals we will show that for τ = (E′PC)/(EPT ) ≤ 1, α̂ = (C/R) ≥ 1 the motionless state is always stable
and for τ ≤ 1, α̂ < 1 the sufficient and necessary conditions for stability coincide, where PC, PT , C and R are the Schmidt number, Prandtl number,
Rayleigh number for solute and heat, respectively, E′ and E are two constants related to porosity of porous medium. Unlike the energy-decay
rate in previous works concerning the nonlinear stability of Bénard problem for the same boundaries, this quantity in present work is completely
independent of mode numbers.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, the investigation of thermosolutal convection in fluids in a porous medium has attracted attention of many
researchers because of its applications in geophysics, astrophysics, soil science, ground water hydrology and recovery of crude oil
from the pores of reservoir rocks. In the case of non-Newtonian fluids the study of the thermosolutal convection problems has also
gained more and more importance owning its applications in chemical technology, petroleum industry and composite materials.
For instance, there are polymeric materials that are used in the manufacture of semi-conductor devices that need the solidification
processes. To make these materials free from defect, convection must be controlled. However, the investigations of the nonlinear
stability of flows through porous media in non-Newtonian fluids are very few in numbers as compared to those in Newtonian fluids.
This is just the motivation of present work.

According to Sharma et al. [1] on neglecting the squares and products of A2 in the constitutive equations characterizing
Rivlin–Ericksen fluid we have

τij = −pδij + νA1 + ν′A2 + ν′′A2
1

where τij is the stress tensor, p the pressure, δij the Kronecker delta, and ν, ν′ and ν′′ are three measurable material constants. They
denote respectively the viscosity, elasticity and cross-viscosity, A1 and A2 are given by

A
(1)
ij = (ui,j + uj,i)
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and

A
(2)
ij = ∂

∂t
A

(1)
ij + umA

(1)
ij,m + A

(1)
imum,j + A

(1)
mjum,i

For fluid permeating a porous material, on the basis of Darcy’s law the usual viscous term in the equations of Rivlin–Ericksen
fluid motion is replaced by the resistance term [−1/k1(ν + ν′(∂/∂t))u], where k1 is the medium permeability and u is the Darcian
velocity of the fluid.

An infinite, horizontal, incompressible Rivlin–Ericksen fluid layer, in porous medium, heated and soluted from below for stress-
free boundary conditions is considered in this paper. The linear stability of motionless state of this system with solute concentration,
uniform rotation and uniform vertical magnetic field is studied in Sharma et al. [1], the linear stabilizing effect of solute concentration
is proved. As we know, the method of linearized stability tends to overestimate stability, the stability so obtained is only for indefinitely
small perturbations and global stability cannot be derived. Therefore, different methods like the energy method have been devised,
which enable us to obtain unconditional stability or, at least, conditional stability with finite amplitude. In this paper we consider
only the effect of solute concentration. By applying generalized energy method (see Xu [2], Galdi and Padula [3], Xu and von Wahl
[4] and Mulone and Rionero [5]) and through defining energy functional we shall prove the sufficient and necessary condition for
stability coincide, for the case α̂ < 1 and τ ≤ 1. This result was also proved in previous paper by Xu [2]. Moreover, in this paper we
shall take advantage of a mathematical decomposition and transfer the system to an equivalent one, then we introduce two balance
fields instead of only one in Xu [2], so that, for the case α̂ ≥ 1 and τ ≤ 1, we can directly show that the nonlinear stability boundary
RE = +∞, that means the basic state is always stable in this case.

Unlike previous works concerning the nonlinear stability of the Bénard problem with rotation (solute concentration or magnetic
field) (see Galdi and Padula [3], Mulone and Rionero [5] and Kaiser and Xu [6]) for free boundaries, where the decay rate and stability
ball depend on the mode numbers in the horizontal directions and these quantities shrink to zero for vanishing mode numbers, in the
present paper, these quantities for our problem are completely independent of the mode numbers.

2. Mathematical formulation and perturbation equations

Let us consider an infinite horizontal incompressible Rivlin–Ericksen layerR2 × (0, d) in a Cartesian reference frame Oxyz with
unit vector k = (0, 0, 1) for the z-axis, which is parallel to the direction of the vertical. The layer is heated and soluted from below
so that the temperature and solute concentration at z = 0 are T0 and C0, and at z = d are T1 and C1, respectively. The system is
subject to the force of gravity g = −gk. Moreover, we assume that the fluid is flowing through an isotropic and homogeneous porous
medium of porosity φ and medium permeability k1. In this configuration the motionless state is described by

u = 0, T = −βT z+ T0, C = −βCz+ C0

Let u = (u, v,w), θ, γ, p represent the perturbations of the velocity, temperature, solute concentration and pressure fields to the
motionless state, respectively. Then after non-dimensionalizing the equations of Rivlin–Ericksen fluid (see Sharma et al. [1]), we
obtain the perturbation equations with z∈ (−(1/2), 1/2):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ−1∂tu = −P−1
l (1 + F∂t)u + (Rθ − Cγ)k − ∇p− φ−2(u · ∇u)

∇ · u = 0

EPT ∂tθ = −(−Δ)θ + Rw− EPTu · ∇θ
E′PC∂tγ = −(−Δ)γ + Cw− E′PCu · ∇γ

(1)

where R2(Rayleigh number for heat)=(αT βT gd4)/(κν), C2(Rayleigh number for solute)=(αCβCgd4)/(κ′ν), PT (Prandtl number)
= ν/κ,PC(Schmidt number) = ν/κ′, Pl = k1/d

2, F = ν′/d2. Here αT , αC, βT , βC, ν, ν′, κ, κ′ and k1 denote, respectively, the ther-
mal coefficient of expansion, the solvent coefficient of expansion, the temperature gradient, the solute gradient, the kinematic
viscosity, the kinematic viscoelasticity, the thermal diffusivity coefficient, solute diffusivity coefficient and medium permeability. E
and E′ are two constants corresponding to heat and solute, which also depend on porosity φ. Δ is the Laplace operator.

u, θ, γ and p are assumed to be x, y-periodic with respect to a rectangle P = (−(π/α), (π/α))(−(π/β), (π/β)) with wave numbers
α, β in x- and y-direction, respectively.
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